Utilization of hardened Phaseolus Lunatus Beans as a Source of Naturally Occurring Bioactive Peptides

Autores

DOI:

https://doi.org/10.21664/2238-8869.2025v14i4.8263

Palavras-chave:

antioxidant, antiperoxidative, thermal-resistant, vasoactive, ACE-inhibitor

Resumo

Hardened beans are rejected by consumers and frequently used as animal feed despite their unchanged nutritional content after hardening. Particularly, hardened beans are still a rich source of protein and carbohydrate, in a hunger world. There are several studies describing encrypted bioactive peptides; however, little is known about naturally occurring peptides and their functionalities. In this study, naturally occurring peptides from hardened Phaseolus lunatus were extracted, partially purified and examined regarding their biological potential. Extractor solutions were tested to obtain the maximum yield and antioxidant activity. The most nonpolar was the more effective for obtaining antioxidant peptides (DPPH - 962±29 and FRAP - 2567±83 µmol Trolox/mg protein). Treatment for 30min/90 ºC increased 2.6-fold (2497 µmol Trolox/mg protein) the antioxidant activity by DPPH and 1.2-fold (3149 µmol Trolox/mg protein) the FRAP assay. Antioxidant peptides in the <3kDa-fraction resisted gastric/intestinal digestion and presented anti-peroxidative activity close to the BHT. Finally, peptides presented vasorelaxant activity in the range of 30% (F<3 kDa) and 17% (hydrolyzed F<3 kDa) and ACE-inhibitory activity in the range of 15% (F<3 kDa) and 85% (hydrolyzed F<3 kDa).

Referências

Batista, K. A., Prudêncio, S. H. & Fernandes, K. F. (2010) Changes in the Functional Properties and Antinutritional Factors of Extruded Hard-to-Cook Common Beans (Phaseolus vulgaris, L.). Journal of Food Science, 75, 286-290.

http://doi.org/10.1111/j.1750-3841.2010.01557.x

Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.

Boschin, G., Scigliuolo, G., Resta, D., Arnoldi, A. (2014) ACE-inhibitory activity of enzymatic protein hydrolysates from lupin and other legumes. Food Chemistry, 145: 34-40.

Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 1995, 28, 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Camargo, L. L., Rios, F. J., Montezano, A. C., Touyz, R. M. (2025) Reactive oxygen species in hypertension. Nature Reviews Cardiology, 22, 20-37

https://doi.org/10.1038/s41569-024-01062-6

Cho, S., Szeto, H. H., Kim, E., Kim, H., Tolhurst, A.T., Pinto, J. T. (2007) A novel cell-permeable antioxidant peptides, SS31, attenuates ischemic brain Injury by down-regulating CD36*. Journal of Biological Chemistry, 282, 4634-4642.

https://doi.org/10.1074/jbc.M609388200

Dantezer, M., Vasconcelos, I. M., Scorsato, V., Aparicio, R., Marangoni, S., Macedo, M. L. R. (2015) Bowman-Birk proteinase inhibitor from Clitoria fairchildiana seeds: Isolation, biochemical properties and insecticidal potential. Phytochemistry, 118, 224 - 235. https://doi.org/10.1016/j.phytochem.2015.08.013

Dietary Guidelines Advisory Committee. (2020) Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.

Dorta, E., Lobo, M. G., & Gonzalez, M. (2011) Reutilization of mango byproducts: Study of the effect of extraction solvent and temperature on their antioxidant properties. Journal of Food Science, 77(1), 80 – 88.

https://doi.org/10.1111/j.1750-3841.2011.02477.x

Egbe, I. A. & Akinyele, I.O. (1990) Effect of cooking on the antinutritional factors of lima beans (Phaseolus lunatus). Food Chemistry, 35: 81 – 87.

https://doi.org/10.1016/0308-8146(90)90022-V

Ehinger, F. J., Hertweck, C. (2024) Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines. Current Opinion in Chemical Biology, 81, 102494. https://doi.org/10.1016/j.cbpa.2024.102494

Ferri, M., Graen Heedfeld, J., Bretz, K., Guillon, F., Michelini, E., Calabretta, M.M. (2017) Peptide Fractions Obtained from Rice By Products by Means of an Environment Friendly Process Show In Vitro Health Related Bioactivities. PLoS ONE; 12, e0170954.

Graziani, D., Ribeiro, J.V.V., Cruz, V.S., Gomes, R.M., Araújo, E.G., Santos Júnior, A.C.M., Tomaz, H.C.M., Castro, C.H., Fontes, W., Batista, K.A., Fernandes, K.F., Xavier, C.H. (2021) Oxidonitrergic and antioxidant effects of a low molecular weight peptide fraction from hardened bean (Phaseolus vulgaris) on endothelium. Brazilian Journal of Medical and Biological Research (2021) 54(6): e10423, http://dx.doi.org/10.1590/1414-431X202010423

Griendling, K. K., Camargo, L. L., Rios, F. J., Alves-Lopes, R., Montezano, A. C., Touyz, R. M. (2022) Oxidative Stress and Hypertension. Circulation Research, 128, 993–1020. https://doi.org/10.1161/CIRCRESAHA.121.318063

Hayakari M., Kondo Y., Izumi H. (1978) A rapid and simple spectrophotometric assay of angiotensin-converting enzyme. Analytical Biochemistry, 84, 361-369. https://doi.org/10.1016/0003-2697(78)90053-2

Houldsworth, A. (2024) Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications, 2024, 1-12. https://doi.org/10.1093/braincomms/fcad356

Kaur, A., Kehinde, B.A., Sharma, P., Sharma, D., Kaur, S. (2021) Recently isolated food-derived antihypertensive hydrolysates and peptides: a review. Food Chemistry, 346, 128719. https://doi.org/10.1016/j.foodchem.2020.128719.

Laurena, A. C., Revilleza, J. R. & Mendoza, E. M. (1994) Polyphenols, Phytate, Cynanogenic Glycosides, and Trypsin inhibitor activity of several Philippine Indigenous Food Legumes. Journal of Food Composition and Analysis, 7, 194 – 202. https://doi.org/10.1006/jfca.1994.1019

Lemes, A. C., Machado, J. R., Brites, M. L., Luccio, M., Kalil, S. J. (2014) Design Strategies for Integrated β -Galactosidase Purification Processes. Chemical Engineering Technology, 37, 1805-1812. https://doi.org/10.1002/ceat.201300433

Li, K., Bian, J., Wu, H., Wang, Y., Feng, Y., Nie, J., Chen, N., Yu, H., Li, W., Tan, Y., Lu, G. (2024) Anti-inflammatory activity of organic acids from the seeds of Phaseolus lunatus L. Phytochemistry Letters, 61, 120–124.

https://doi.org/10.1016/j.phytol.2024.04.004

Mahatmanto, T., Poth, A. G., Mylne, J. S., Craik, D. J. (2014) A comparative study of extraction methods reveals preferred solvents for cystine knot peptide isolation from Momordica cochinchinensis seeds. Fitoterapia, 95: 22–33.

https://doi.org/10.1016/j.fitote.2014.02.016

Megías, C., Yust, M., Pedroche, J., Lquari, H., Giron-Calle, J. Alaiz, M., Millan, F., Vioque, J. (2004) Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. Journal of Agricultural and Food Chemistry, 52,1928-1932. https://doi.org/10.1021/jf034707r

Miao, J., Miao, Li, X., L., Zhao, C., Gao, X., Wang, Y., Cheng, K., Gao, W. (2018) Solvents effect on active chemicals and activities of antioxidant, anti-α-glucosidase and inhibit effect on smooth muscle contraction of isolated rat jejunum of Chaenomeles speciosa. Journal of Functional Foods, 40, 146 –155. https://doi.org/10.1016/j.jff.2017.09.007

Munteanu, I. G., Apetrei (2021) Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Science, 22, 3380. https://doi.org/10.3390/ijms22073380

Nwachukwu, I. D., Aluko, R. E. (2019) Structural and functional properties of food protein‐derived antioxidant peptides. Journal of Food Biochemistry, 43, e12761. https://doi.org/10.1111/jfbc.12761

Ohkawa, H., Ohishi, N., Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351-358.

https://doi.org/10.1016/0003-2697(79)90738-3

Oseguera-Toledo, M. E., de Mejia, E. G., Dia, V. P., & Amaya-Llano, S. L. (2011) Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in Sinduced macrophages through suppression of NF-KB pathways. Food chemistry, 127(3): 1175 -1185. https://doi.org/10.1016/j.foodchem.2011.01.121

Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., Lewandowski, W. (2021) Recent developments in effective antioxidants - the structure and antioxidant properties. Materials 2021, 14, 1-24. https://doi.org/10.3390/ma14081984

Paula, L. C., Lemes, A. C., Valencia-Mejía, E., Moreira B. R., Oliveira, T. S., Campos, I. T. N., Neri, H. F. S., Brondani, C., Ghedini, P. C., Batista, K. A., Fernandes, K. F. (2022) Effect of extrusion and autoclaving on the biological potential of proteins and naturally-occurring peptides from common beans: antioxidant and vasorelaxant properties. Food Chemistry: X 13, 100259.

https://doi.org/10.1016/j.fochx.2022.100259

Pereira, M. P. & Tavano, O. L. (2014) Use of Different Spices as Potential Natural Antioxidant Additives on Cooked Beans (Phaseolus vulgaris). Increase of DPPH Radical Scavenging Activity and Total Phenolic Content. Plant Foods and Human Nutrition, 69, 337–343. https://doi.org/10.1007/s11130-014-0439-4

Qiao, Q., Chen, L., Li, X., Lu, X., Xu, Q. (2021) Roles of Dietary Bioactive Peptides in Redox Balance and Metabolic Disorders. Oxidative Medicine and Cellular Longevity, 2021, ID 5582245, 27 pages. https://doi.org/10.1155/2021/5582245

Recharla, N., Riaz, M., Ko, S. & Park, S. Novel technologies to enhance solubility of food-derived bioactive compounds: A review. J. Func. Foods 2017; 39: 63 - 73. https://doi.org/10.1016/j.jff.2017.10.001

Ribeiro, J. V. V., Graziani, D., Carvalho, J. H. M., Mendonça, M. M., Naves, L. M., Oliveira, H. F., Campos, H. M., Fioravanti, M. C. S., Pacheco, L. F., Ferreira, P. M, Pedrino, G. R., Ghedini, P. C., Fernandes, K. F., Batista, K. A., Xavier, C. H. (2023) A peptide fraction from hardened common beans (Phaseolus vulgaris) induces endothelium-dependent antihypertensive and renal effects in rats. Current Research in Food Science, 6, 100410. https://doi.org/10.1016/j.crfs.2022.100410

Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S.M., Sampaio, O, C.G.; Pérez-Jiménez, J., Saura-Calixto, F. D. (2006) Scientific Methodology: Determination of Total Fruit Activity by the Iron Reduction Method (FRAP). Technical Communication-Embrapa Ceará.1st ed. Ceará. Brazil.

Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E., Tavano, O., Berenguer-Murcia, A., Fernandez-Lafuente, R. (2020) Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 165, 2143-2196. https://doi.org/10.1016/j.ijbiomac.2020.10.060

Touyz, R. M., Rios, F. J., Alves-Lopes, R., Neves, K. B., Camargo, L. L., Montezano, A. C. (2024) Oxidative stress: a unifying paradigm in hypertension. Canadian Journal of Cardiology, 36, 659-670. https://doi.org/10.1016/j.cjca.2020.02.081

Urrutia, P. J. & Bórquez, D. A. (2023) Expanded bioinformatic analysis of Oximouse dataset reveals key putative processes involved in brain aging and cognitive decline. Free Radical Biology and Medicine, 207, 200–211. https://doi.org/10.1016/j.freeradbiomed.2023.07.018

Valencia-Mejía, E., Batista, K. A., Fernández, J. J. A., Fernandes, K. F. (2019) Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Research International, 121, 238–246. https://doi.org/10.1016/j.foodres.2019.03.043

Wang, H., Zhang, Z., Guo, Y., Sun, P., Xiaoling, L., Zuo, Y. (2011) Hawthorn fruit increases the antioxindant capacity and reduces lipid peroxidation in senescence-accelerated mice. European Food Research and Technology, 232: 743 – 751. https://doi.org/10.1007/s00217-011-1435-7

Wang, R., Zhao, Y., Xue, W., Xia, Y., Liang, G. (2024) Novel antioxidant peptides from soybean protein by employ computational and experimental methods and their mechanisms of oxidative stress resistance. Journal of Molecular Structure, 1318, 139284. https://doi.org/10.1016/j.molstruc.2024.139284

Downloads

Publicado

2025-12-19

Como Citar

B. ARAÚJO , Renata; PAULA, Ladyslene; BATISTA, Karla; LEMES, Ailton; OLIVEIRA, Thiago; NERI, Hiasmin; SANTOS, Elize Leonice da Rocha; GHEDINI, Paulo; FERNANDES, Kátia. Utilization of hardened Phaseolus Lunatus Beans as a Source of Naturally Occurring Bioactive Peptides. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 14, n. 4, p. 125–138, 2025. DOI: 10.21664/2238-8869.2025v14i4.8263. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/8263. Acesso em: 23 dez. 2025.