Variación estacional del plomo en el agua y en los sedimentos del lago Iripixí: un estudio sobre fuentes de contaminación e impactos ambientales

Autores/as

DOI:

https://doi.org/10.21664/2238-8869.2025v14i2.p74-89

Palabras clave:

metales tóxicos, Estacionalidad, lagos amazónicos, interpolación ponderada por la inversa de la distancia, contaminación de sedimentos

Resumen

El estudio tuvo como objetivo evaluar las concentraciones de plomo en el agua y en los sedimentos en diferentes períodos estacionales en el Lago Iripixí, destacando la influencia significativa de actividades antropogénicas y factores naturales. Se recogieron muestras en 24 puntos en áreas urbanas, periurbanas y rurales del lago, siguiendo metodologías recomendadas por la ANA, y se analizaron usando ICP-OES. Se empleó el método de Interpolación por Ponderación de la Distancia Inversa (IDW) para estimar valores en lugares no muestreados basándose en observaciones cercanas, dando mayor peso a los puntos más próximos. Los resultados indicaron que mayores concentraciones de plomo se encontraron en el agua durante la estación lluviosa, con tendencias similares observadas en sedimentos, particularmente cerca de áreas urbanas y en la entrada del lago, sugiriendo impactos directos de actividades humanas y potenciales contribuciones del Río Trombetas. En contraste, las concentraciones de plomo en los sedimentos no excedieron los límites, indicando que la contaminación del agua no siempre está correlacionada con los niveles de sedimentos debido a la movilidad temporal o condiciones químicas. Para mitigar estos impactos, son esenciales estrategias efectivas de gestión y remediación, basadas en evaluaciones ambientales exhaustivas usando herramientas como IDW. Entender esta dinámica es crucial para proteger los ecosistemas acuáticos y orientar prácticas sostenibles de gestión de recursos.

 

Biografía del autor/a

Joseph Simões Ribeiro, Universidade Federal do Oeste do Pará

 

 

Rônison Santos da Cruz, Universidade Federal do Oeste do Pará

 

 

Paulo Sergio Taube, Universidade Federal do Oeste do Pará

 

 

Kelson do Carmo Freitas Faial, Instituto Evandro Chagas, Ananindeua

 

 

Ruy Bessa Lopes, Universidade Federal do Oeste do Pará

 

 

Citas

Abende Sayom RY, Tchatchoua FTR, Fotie BM, Mambou Ngueyep LL, Tchuikoua LB, Meying A 2023. Contamination and risk assessment of trace metals and As in surface sediments from abandoned gold mining sites of Bekao, Adamawa-Cameroon. Regional Studies in Marine Science 62:102985. DOI: https://doi.org/10.1016/j.rsma.2023.102985

Ajiboye TO, Oyewo OA, Onwudiwe DC 2021. Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379. DOI: https://doi.org/10.1016/j.chemosphere.2020.128379

Alloway BJ, ed. 2012. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Vol. 22. Londres, Inglaterra: Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-4470-7

ANA - Agência Nacional das Águas 2018. Guia Nacional de Coleta e Preservação de Amostras: Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos, São Paulo: CETESB; Brasília: ANA, 459 pp.

Araújo EP, Abreu CHM, Cunha HFA, Brito AU, Pereira NN, Cunha AC 2022. Vulnerability of biological resources to potential oil spills in the Lower Amazon River, Amapá, Brazil. Environmental Science and Pollution Research 30(12):35430-35449. DOI: https://doi.org/10.1007/s11356-022-24592-3

Bancon-Montigny C, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Hlaili AS, Pringault O 2019. Seasonal changes of chemical contamination in coastal waters during sediment resuspension. Chemosphere 235: 651-661. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.213

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF 2020. Publisher correction: present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 7(1):274. DOI: https://doi.org/10.1038/s41597-020-00616-w

BRASIL. Resolução CONAMA 357, de 17 de março de 2005. Conselho Nacional de Meio Ambiente. [serial on the Internet]. 2005 Mar [cited 2023 Set];102(6):[about 36 p.].

BRASIL. Resolução CONAMA 454, de 01 de novembro de 2012. Conselho Nacional de Meio Ambiente. [serial on the Internet]. 2012 Nov [cited 2023 Set];102(6):[about 18 p.].

Caeiro S, Costa MH, DelValls A, Repolho T, Gonçalves M, Mosca A, Coimbra AP, Ramos TB, Painho M 2009. Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology 18(8):1165-1175. DOI: https://doi.org/10.1007/s10646-009-0372-8

Calvo BDR, Oliveira TCS 2020. Hydrochemical analysis of a basin under anthropogenic influence and effects in Manaus' shoreline - Central Amazonia. Caminhos de Geografia 21(77):209-219. DOI: https://doi.org/10.14393/RCG217752794

Coles CA, Rao SR, Yong RN 2000. Lead and cadmium interactions with mackinawite: retention mechanisms and the role of pH. Environmental Science & Technology 34(6):996-1000. DOI: https://doi.org/10.1021/es990773r

Correa SB, van der Sleen P, Siddiqui SF, Bogotá-Gregory JD, Arantes CC, Barnett AA, Couto TBA, Goulding M, Anderson EP 2022. Biotic indicators for ecological state change in Amazonian floodplains. BioScience 72(8):753-768. DOI: https://doi.org/10.1093/biosci/biac038

Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE 2008. The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335-335. DOI: https://doi.org/10.1126/science.1154082

Cruz RS, Ribeiro JS, Moura LS, Lopes RB, Freitas KF, Gul K, Malik S, Taube PS 2022. Determination of heavy metals by inductively coupled plasma optical emission spectrometry in water samples from Lake Iripixi, Oriximiná, PA, Brazil. Water, Air, & Soil Pollution 233(7):247.

DOI: https://doi.org/10.1007/s11270-022-05726-2

Gao S, Zhang R, Zhang H, Zhang S 2022. The seasonal variation in heavy metal accumulation in the food web in the coastal waters of Jiangsu based on carbon and nitrogen isotope technology. Environ Pollut 297:118649. DOI: https://doi.org/10.1016/j.envpol.2021.118649

Huang Y, Zhu W, Le M, Lu X 2012. Temporal and spatial variations of heavy metals in urban riverine sediment: an example of Shenzhen River, Pearl River Delta, China. Quaternary International 282:145-151. DOI: https://doi.org/10.1016/j.quaint.2011.05.026

Jakob AAE, Young AF. O uso de métodos de interpolação espacial de dados nas análises sociodemográficas. Associação Brasileira de Estudos Populacionais - ABEP [serial on the Internet]. 2006 Set [cited 2023 Nov 11]; 15; ):[about 22 p.]. Available from: DOI: http://www.abep.org.br/publicacoes/index.php/anais/article/viewFile/1530/1494.

Junk WJ, Furch K 1980. Química da água e macrófitas aquáticas de rios e igarapés na Bacia Amazônica e nas áreas adjacentes Parte I: Trecho Cuiabá - Porto Velho - Manaus. Acta Amazônica 10(3):611-633. DOI: https://doi.org/10.1590/1809-43921980103611

Kazi TG, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, Baig JA, Shah AQ 2009. Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety 72(2):301-309. DOI: https://doi.org/10.1016/j.ecoenv.2008.02.024

Lages AS, Miranda SAF, Ferreira SJ, Albuquerque SD, Cetauro A, Lopes A, Silva ML 2022. Dynamics of heavy metals in the waters of Igarape Do Quarenta: the water body that crosses the industrial hub in the Brazilian Amazon. Open Science Journal 7(2):1-13. DOI: https://osjournal.org/ojs/index.php/OSJ/article/view/3048

Landim PMB 2000. Introdução aos métodos de estimação espacial para confecção de mapas. Geomatemática DGA,IGCE,UNESP/Rio Claro. Rio Claro, SP: UNESP. [serial on the Internet] 2000 Jun [cited 2023 Set 11] ;1 :[about 20 p.]. Available from: http://clip2net.com/clip/m14793/1259865010-surfer03-2228kb.pdf.

Lenoble V, Omanović D, Garnier C, Mounier S, Đonlagić N, Le Poupon C, Pižeta I 2013. Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Science of The Total Environment 443:420-428. DOI: https://doi.org/10.1016/j.scitotenv.2012.10.002

Li H, Shi A, Li M, Zhang X 2013. Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry 2013:1-11. DOI: https://doi.org/10.1155/2013/434012

López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R 2019. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Science of The Total Environment 690:1068-1088. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.052

Martins RO, Brait CH, Santos FF 2018. Avaliação do teor de metais pesados e de parâmetros físico-químicos da água e sedimento do Lago Bonsucesso, Jataí - GO. Geoambiente On-Line 29(29). DOI: https://doi.org/10.5216/revgeoamb.v0i29.51072

Mehana EE, Khafaga AF, Elblehi SS, Abd El-Hack ME, Naiel MAE, Bin-Jumah M, Othman SI, Allam AA 2020. Biomonitoring of heavy metal pollution using acanthocephalans parasite in ecosystem: an updated overview. Animals 10(5):811. DOI: https://doi.org/10.3390/ani10050811

Moiseenko TI, Gashkina NA 2020. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate. Environ Res Lett 15(11):115013. DOI: https://doi.org/10.1088/1748-9326/abbf7c

Nabi M 2021. Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management 16:100509. DOI: https://doi.org/10.1016/j.enmm.2021.100509

OSHA.org [homepage on the Internet] Washington, DC, USA: Occupational Safety and Health Administration.; Cadmium Overview [updated 2012 Set 23; cited 2023 Aug 12].. Available from: https://www.osha.gov/cadmium.

Pandey J, Singh R 2017. Heavy metals in sediments of Ganga River: up- and downstream urban influences. Applied Water Science 7(4):1669-1678. DOI: https://doi.org/10.1007/s13201-015-0334-7

Patel P, Raju NJ, Reddy BCS, Suresh U, Sankar DB, Reddy TVK 2018. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications. Environmental Geochemistry and Health 40(2):609-623. DOI: https://doi.org/10.1007/s10653-017-0006-7

Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1(1):57-61. DOI: https://doi.org/10.1039/a807854h

Rumuri R, Ramkumar T, Vasudevan S, Gnanachandrasamy G 2023. Enrichment of heavy metals as function of salinity and pH of estuarine sediments, Southeast Coast of India. Geology, Ecology, and Landscapes 7(3):212-220. DOI: https://doi.org/10.1080/24749508.2021.1952764

Salam MA, Paul SC, Shaari FI, Rak AE, Ahmad RB, Kadir WR 2019. Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology 6(2):30. DOI: https://doi.org/10.3390/hydrology6020030

Siddiqui SF, Zapata-Rios X, Torres-Paguay S, Encalada AC, Anderson EP, Allaire M, Doria CR, Kaplan DA 2021. Classifying flow regimes of the Amazon Basin. Aquatic Conservation: Marine and Freshwater Ecosystems 31(5):1005-1028. DOI: https://doi.org/10.1002/aqc.3582

Silva EC, Gutjahr ALN, Braga CES 2021. Caracterização físico-química da água de um rio urbano amazônico, Capanema, Pará, Brasil. Research, Society and Development 10(16):e51101622866. DOI: https://doi.org/10.33448/rsd-v10i16.22866

Silva LTM 2020. Retenção e mobilidade de zinco e cromo num solo aluvionar do alto do Capibaribe. Caruaru, Pb: Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade Federal de Pernambuco, Caruaru, 76 pp.

Singh H, Pandey R, Singh SK, Shukla DN 2017. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Applied Water Science 7(7):4133-4149. DOI: https://doi.org/10.1007/s13201-017-0572-y

Tan WH, Tair R, Ali SAM, Talibe A, Sualin F, Payus C 2016. Distribution of heavy metals in seawater and surface sediment in coastal area of Tuaran, Sabah. Transactions on Science and Technology 3(1-2):114-122.

USEPA.org [homepage on the Internet]. Washington, DC, USA: United States Environmental Protection Agency; Method 3015A (SW-846): Microwave assisted acid digestion of aqueous samples and extracts. [updated 2007 Fev 16; cited 2023 Fev 11]. Available from:https://www.epa.gov/sites/default/files/2015-12/documents/3015a.pdf.

Zhang X, Li Z, Takeuchi N, Wang F, Wang S, You X, Zhou P 2017. Heavy metal-polluted aerosols collected at a rural site, Northwest China. Journal of Earth Science 28(3):535-544. DOI: https://doi.org/10.1007/s12583-017-0728-6

Descargas

Publicado

2025-06-05

Cómo citar

RIBEIRO, Joseph Simões; CRUZ, Rônison Santos da; TAUBE, Paulo Sergio; FAIAL, Kelson do Carmo Freitas; LOPES, Ruy Bessa. Variación estacional del plomo en el agua y en los sedimentos del lago Iripixí: un estudio sobre fuentes de contaminación e impactos ambientales. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 14, n. 2, p. 74–89, 2025. DOI: 10.21664/2238-8869.2025v14i2.p74-89. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/7548. Acesso em: 1 jul. 2025.