Seasonal Variation in Lead in the Water and Sediment of Lake Iripixí: A Study of Possible Sources of Contamination
DOI:
https://doi.org/10.21664/2238-8869.2025v14i2.p74-89Keywords:
toxic metals, seasonality, amazonian lakes, interpolation inverse distance weighted, sediment contaminationAbstract
The study aimed to assess lead concentrations in water and sediments across different seasonal periods in Lake Iripixí, highlighting the significant influence of anthropogenic activities and natural factors. Samples were collected at 24 points in urban, peri-urban, and rural areas of the lake, following methodologies recommended by ANA, and analyzed using ICP-OES. The Interpolator Inverse Distance Weighted (IDW) method was employed to estimate values at unsampled locations based on nearby observations, giving greater weight to closer points. Results indicated that higher lead concentrations were found in water during the rainy season, with similar trends observed in sediments, particularly near urban areas and at the lake's inlet, suggesting direct impacts from human activities and potential contributions from the Trombetas River. In contrast, lead concentrations in sediments did not exceed limits, indicating that water contamination isn't always correlated with sediment levels due to temporary mobility or chemical conditions. To mitigate these impacts, effective management and remediation strategies are essential, based on comprehensive environmental assessments using tools such as IDW. Understanding these dynamics is crucial for protecting aquatic ecosystems and guiding sustainable resource management practices.
References
Abende Sayom RY, Tchatchoua FTR, Fotie BM, Mambou Ngueyep LL, Tchuikoua LB, Meying A 2023. Contamination and risk assessment of trace metals and As in surface sediments from abandoned gold mining sites of Bekao, Adamawa-Cameroon. Regional Studies in Marine Science 62:102985. DOI: https://doi.org/10.1016/j.rsma.2023.102985
Ajiboye TO, Oyewo OA, Onwudiwe DC 2021. Simultaneous removal of organics and heavy metals from industrial wastewater: a review. Chemosphere 262:128379. DOI: https://doi.org/10.1016/j.chemosphere.2020.128379
Alloway BJ, ed. 2012. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Vol. 22. Londres, Inglaterra: Springer Science & Business Media. DOI: https://doi.org/10.1007/978-94-007-4470-7
ANA - Agência Nacional das Águas 2018. Guia Nacional de Coleta e Preservação de Amostras: Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos, São Paulo: CETESB; Brasília: ANA, 459 pp.
Araújo EP, Abreu CHM, Cunha HFA, Brito AU, Pereira NN, Cunha AC 2022. Vulnerability of biological resources to potential oil spills in the Lower Amazon River, Amapá, Brazil. Environmental Science and Pollution Research 30(12):35430-35449. DOI: https://doi.org/10.1007/s11356-022-24592-3
Bancon-Montigny C, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Hlaili AS, Pringault O 2019. Seasonal changes of chemical contamination in coastal waters during sediment resuspension. Chemosphere 235: 651-661. DOI: https://doi.org/10.1016/j.chemosphere.2019.06.213
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF 2020. Publisher correction: present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 7(1):274. DOI: https://doi.org/10.1038/s41597-020-00616-w
BRASIL. Resolução CONAMA 357, de 17 de março de 2005. Conselho Nacional de Meio Ambiente. [serial on the Internet]. 2005 Mar [cited 2023 Set];102(6):[about 36 p.].
BRASIL. Resolução CONAMA 454, de 01 de novembro de 2012. Conselho Nacional de Meio Ambiente. [serial on the Internet]. 2012 Nov [cited 2023 Set];102(6):[about 18 p.].
Caeiro S, Costa MH, DelValls A, Repolho T, Gonçalves M, Mosca A, Coimbra AP, Ramos TB, Painho M 2009. Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology 18(8):1165-1175. DOI: https://doi.org/10.1007/s10646-009-0372-8
Calvo BDR, Oliveira TCS 2020. Hydrochemical analysis of a basin under anthropogenic influence and effects in Manaus' shoreline - Central Amazonia. Caminhos de Geografia 21(77):209-219. DOI: https://doi.org/10.14393/RCG217752794
Coles CA, Rao SR, Yong RN 2000. Lead and cadmium interactions with mackinawite: retention mechanisms and the role of pH. Environmental Science & Technology 34(6):996-1000. DOI: https://doi.org/10.1021/es990773r
Correa SB, van der Sleen P, Siddiqui SF, Bogotá-Gregory JD, Arantes CC, Barnett AA, Couto TBA, Goulding M, Anderson EP 2022. Biotic indicators for ecological state change in Amazonian floodplains. BioScience 72(8):753-768. DOI: https://doi.org/10.1093/biosci/biac038
Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE 2008. The movement of aquatic mercury through terrestrial food webs. Science 320(5874):335-335. DOI: https://doi.org/10.1126/science.1154082
Cruz RS, Ribeiro JS, Moura LS, Lopes RB, Freitas KF, Gul K, Malik S, Taube PS 2022. Determination of heavy metals by inductively coupled plasma optical emission spectrometry in water samples from Lake Iripixi, Oriximiná, PA, Brazil. Water, Air, & Soil Pollution 233(7):247.
DOI: https://doi.org/10.1007/s11270-022-05726-2
Gao S, Zhang R, Zhang H, Zhang S 2022. The seasonal variation in heavy metal accumulation in the food web in the coastal waters of Jiangsu based on carbon and nitrogen isotope technology. Environ Pollut 297:118649. DOI: https://doi.org/10.1016/j.envpol.2021.118649
Huang Y, Zhu W, Le M, Lu X 2012. Temporal and spatial variations of heavy metals in urban riverine sediment: an example of Shenzhen River, Pearl River Delta, China. Quaternary International 282:145-151. DOI: https://doi.org/10.1016/j.quaint.2011.05.026
Jakob AAE, Young AF. O uso de métodos de interpolação espacial de dados nas análises sociodemográficas. Associação Brasileira de Estudos Populacionais - ABEP [serial on the Internet]. 2006 Set [cited 2023 Nov 11]; 15; ):[about 22 p.]. Available from: DOI: http://www.abep.org.br/publicacoes/index.php/anais/article/viewFile/1530/1494.
Junk WJ, Furch K 1980. Química da água e macrófitas aquáticas de rios e igarapés na Bacia Amazônica e nas áreas adjacentes Parte I: Trecho Cuiabá - Porto Velho - Manaus. Acta Amazônica 10(3):611-633. DOI: https://doi.org/10.1590/1809-43921980103611
Kazi TG, Arain MB, Jamali MK, Jalbani N, Afridi HI, Sarfraz RA, Baig JA, Shah AQ 2009. Assessment of water quality of polluted lake using multivariate statistical techniques: a case study. Ecotoxicology and Environmental Safety 72(2):301-309. DOI: https://doi.org/10.1016/j.ecoenv.2008.02.024
Lages AS, Miranda SAF, Ferreira SJ, Albuquerque SD, Cetauro A, Lopes A, Silva ML 2022. Dynamics of heavy metals in the waters of Igarape Do Quarenta: the water body that crosses the industrial hub in the Brazilian Amazon. Open Science Journal 7(2):1-13. DOI: https://osjournal.org/ojs/index.php/OSJ/article/view/3048
Landim PMB 2000. Introdução aos métodos de estimação espacial para confecção de mapas. Geomatemática DGA,IGCE,UNESP/Rio Claro. Rio Claro, SP: UNESP. [serial on the Internet] 2000 Jun [cited 2023 Set 11] ;1 :[about 20 p.]. Available from: http://clip2net.com/clip/m14793/1259865010-surfer03-2228kb.pdf.
Lenoble V, Omanović D, Garnier C, Mounier S, Đonlagić N, Le Poupon C, Pižeta I 2013. Distribution and chemical speciation of arsenic and heavy metals in highly contaminated waters used for health care purposes (Srebrenica, Bosnia and Herzegovina). Science of The Total Environment 443:420-428. DOI: https://doi.org/10.1016/j.scitotenv.2012.10.002
Li H, Shi A, Li M, Zhang X 2013. Effect of pH, temperature, dissolved oxygen, and flow rate of overlying water on heavy metals release from storm sewer sediments. Journal of Chemistry 2013:1-11. DOI: https://doi.org/10.1155/2013/434012
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R 2019. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Science of The Total Environment 690:1068-1088. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.052
Martins RO, Brait CH, Santos FF 2018. Avaliação do teor de metais pesados e de parâmetros físico-químicos da água e sedimento do Lago Bonsucesso, Jataí - GO. Geoambiente On-Line 29(29). DOI: https://doi.org/10.5216/revgeoamb.v0i29.51072
Mehana EE, Khafaga AF, Elblehi SS, Abd El-Hack ME, Naiel MAE, Bin-Jumah M, Othman SI, Allam AA 2020. Biomonitoring of heavy metal pollution using acanthocephalans parasite in ecosystem: an updated overview. Animals 10(5):811. DOI: https://doi.org/10.3390/ani10050811
Moiseenko TI, Gashkina NA 2020. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate. Environ Res Lett 15(11):115013. DOI: https://doi.org/10.1088/1748-9326/abbf7c
Nabi M 2021. Heavy metals accumulation in aquatic macrophytes from an urban lake in Kashmir Himalaya, India. Environmental Nanotechnology, Monitoring & Management 16:100509. DOI: https://doi.org/10.1016/j.enmm.2021.100509
OSHA.org [homepage on the Internet] Washington, DC, USA: Occupational Safety and Health Administration.; Cadmium Overview [updated 2012 Set 23; cited 2023 Aug 12].. Available from: https://www.osha.gov/cadmium.
Pandey J, Singh R 2017. Heavy metals in sediments of Ganga River: up- and downstream urban influences. Applied Water Science 7(4):1669-1678. DOI: https://doi.org/10.1007/s13201-015-0334-7
Patel P, Raju NJ, Reddy BCS, Suresh U, Sankar DB, Reddy TVK 2018. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications. Environmental Geochemistry and Health 40(2):609-623. DOI: https://doi.org/10.1007/s10653-017-0006-7
Rauret G, López-Sánchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller Ph 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring 1(1):57-61. DOI: https://doi.org/10.1039/a807854h
Rumuri R, Ramkumar T, Vasudevan S, Gnanachandrasamy G 2023. Enrichment of heavy metals as function of salinity and pH of estuarine sediments, Southeast Coast of India. Geology, Ecology, and Landscapes 7(3):212-220. DOI: https://doi.org/10.1080/24749508.2021.1952764
Salam MA, Paul SC, Shaari FI, Rak AE, Ahmad RB, Kadir WR 2019. Geostatistical distribution and contamination status of heavy metals in the sediment of Perak River, Malaysia. Hydrology 6(2):30. DOI: https://doi.org/10.3390/hydrology6020030
Siddiqui SF, Zapata-Rios X, Torres-Paguay S, Encalada AC, Anderson EP, Allaire M, Doria CR, Kaplan DA 2021. Classifying flow regimes of the Amazon Basin. Aquatic Conservation: Marine and Freshwater Ecosystems 31(5):1005-1028. DOI: https://doi.org/10.1002/aqc.3582
Silva EC, Gutjahr ALN, Braga CES 2021. Caracterização físico-química da água de um rio urbano amazônico, Capanema, Pará, Brasil. Research, Society and Development 10(16):e51101622866. DOI: https://doi.org/10.33448/rsd-v10i16.22866
Silva LTM 2020. Retenção e mobilidade de zinco e cromo num solo aluvionar do alto do Capibaribe. Caruaru, Pb: Dissertação (Mestrado em Engenharia Civil e Ambiental) - Universidade Federal de Pernambuco, Caruaru, 76 pp.
Singh H, Pandey R, Singh SK, Shukla DN 2017. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Applied Water Science 7(7):4133-4149. DOI: https://doi.org/10.1007/s13201-017-0572-y
Tan WH, Tair R, Ali SAM, Talibe A, Sualin F, Payus C 2016. Distribution of heavy metals in seawater and surface sediment in coastal area of Tuaran, Sabah. Transactions on Science and Technology 3(1-2):114-122.
USEPA.org [homepage on the Internet]. Washington, DC, USA: United States Environmental Protection Agency; Method 3015A (SW-846): Microwave assisted acid digestion of aqueous samples and extracts. [updated 2007 Fev 16; cited 2023 Fev 11]. Available from:https://www.epa.gov/sites/default/files/2015-12/documents/3015a.pdf.
Zhang X, Li Z, Takeuchi N, Wang F, Wang S, You X, Zhou P 2017. Heavy metal-polluted aerosols collected at a rural site, Northwest China. Journal of Earth Science 28(3):535-544. DOI: https://doi.org/10.1007/s12583-017-0728-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Joseph Simões Ribeiro, Rônison Santos da Cruz, Paulo Sergio Taube, Kelson do Carmo Freitas Faial, Ruy Bessa Lopes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This journal offers immediate free access to its content, following the principle that providing free scientific knowledge to the public, we provides greater global democratization of knowledge.
As of the publication in the journal the authors have copyright and publication rights of their articles without restrictions.
The Revista Fronteiras: Journal of Social, Technological and Environmental Science follows the legal precepts of the Creative Commons - Attribution-NonCommercial-ShareAlike 4.0 International.