Tecnologias digitais aplicadas à horticultura
DOI:
https://doi.org/10.21664/2238-8869.2025v14i4.8337Palabras clave:
Tecnologías emergentes, Inclusión rural, Sostenibilidad agrícolaResumen
El presente estudio discurre sobre las perspectivas en el escenario actual de las grandes tecnologías digitales en la agricultura moderna, observando sus contribuciones a la productividad, la sostenibilidad y la seguridad alimentaria. Para ello, se realizó una búsqueda en las principales bases de datos como PubMed, Scopus y Scielo, examinando artículos publicados entre 2015 y 2025 relacionados con IoT, drones, sensores, big data e IA, con énfasis en las aplicaciones orientadas a la agricultura familiar. Los temas abordados en la revisión incluyen IoT, drones, sensores, big data e IA. Las principales tecnologías mencionadas son drones para el monitoreo de plagas y enfermedades, sensores para maximizar el uso del agua en el riego, riego automatizado basado en IoT, análisis climáticos para predicciones y “growth chambers” como la hidroponía. Los beneficios observados incluyen una reducción de hasta el 30% por hectárea en el desperdicio de agua, un uso más eficiente de insumos, un aumento en la calidad y trazabilidad del producto y la expansión de la industria hacia el mercado exterior. Sin embargo, los desafíos para los pequeños productores siguen siendo los costos, la falta de conocimiento, la infraestructura limitada en zonas rurales, las barreras cívicas y burocráticas, y la ausencia de políticas públicas. De cara al futuro, se proponen soluciones de código abierto y bajo costo, cooperativas de agricultores y enfoques sostenibles. La conclusión identificada es la digitalización del sector hortícola, que promueve la inclusión social, reduce la desigualdad y fortalece las necesidades de capacitación y resiliencia.
Citas
Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F, Brandhoff P, Gottardo S, Marvin HJ, Mech A, Quiros Pesudo L, Rauscher H, Schoonjans R, Vettori MV, Weigel S, Peters RJ 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463-76. https://doi.org/10.1016/j.yrtph.2015.06.016
Aza-Mengoa GA, Bajos-Arguello K, Venus TE 2025. The role of social innovation in the bioeconomy: The case of Costa Rica's pineapple value web. J Environ Manage 393:126748. https://doi.org/10.1016/j.jenvman.2025.126748
Barker BS, Coop L 2023. Phenological Mapping of Invasive Insects: Decision Support for Surveillance and Management. Insects 15(1):6. https://doi.org/10.3390/insects15010006
Batool K, Zhao ZY, Nureen N, Irfan M 2023. Assessing and prioritizing biogas barriers to alleviate energy poverty in Pakistan: an integrated AHP and G-TOPSIS model. Environ Sci Pollut Res Int 30(41):94669-94693. https://doi.org/10.1007/s11356-023-28767-4
Basso B, Antle J 2020. Digital agriculture to design sustainable agricultural systems. Nature Sustainability 3(4): 254–256. https://doi.org/10.1038/s41893-020-0510-0
Ben Ayed R, Hanana M, Ercisli S, Karunakaran R, Rebai A, Moreau F 2022. Integration of Innovative Technologies in the Agri-Food Sector: The Fundamentals and Practical Case of DNA-Based Traceability of Olives from Fruit to Oil. Plants 11(9):1230. https://doi.org/10.3390/plants11091230
Benos L, Tagarakis AC, Dolias G, Berruto R, Kateris D, Bochtis D 2021. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 21(11):3758. https://doi.org/10.3390/s21113758
Breure TS, Haefele SM, Hannam JA, Corstanje R, Webster R, Moreno-Rojas S, Milne AE 2022. A loss function to evaluate agricultural decision-making under uncertainty: a case study of soil spectroscopy. Precis Agric 23(4):1333-1353. https://doi.org/10.1007/s11119-022-09887-2
Cembrowska-Lech D, Krzemińska A, Miller T, Nowakowska A, Adamski C, Radaczyńska M, Mikiciuk G, Mikiciuk M 2023. An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture. Biology 12(10):1298. https://doi.org/10.3390/biology12101298
Dumont B, Barlagne C, Cassart P, Duval JE, Fanchone A, Gourdine JL, Huguenin-Elie O, Kazakova Y, Klötzli J, Lüscher A, Oteros-Rozas E, Pomies D, Rivera Ferre MG, Rossing WAH, Stefanova V, Swartebroeckx A, Zagaria C 2025. Principles, barriers and enablers to agroecological animal production systems: a qualitative approach based on five case studies. Animal 1:101367. https://doi.org/10.1016/j.animal.2024.101367
Eastwood C, Klerkx L, Nettle R 2019. Dynamics and distribution of digital agriculture: Adoption and impact. Agricultural Systems 173: 66–75. https://doi.org/10.1016/j.agsy.2019.02.017
Ezeonyejiaku CD, Obiakor MO 2017. A Market Basket Survey of Horticultural Fruits for Arsenic and Trace Metal Contamination in Southeast Nigeria and Potential Health Risk Implications. J Health Pollut 7(15):40-50. https://doi.org/10.5696/2156-9614-7.15.40
FAO 2020. The State of Food and Agriculture 2020: Overcoming water challenges in agriculture. Food and Agriculture Organization of the United Nations.
Fang WP, Meinhardt LW, Tan HW, Zhou L, Mischke S, Zhang D 2014. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Hortic Res 1:14035. https://doi.org/10.1038/hortres.2014.35
Getahun S, Kefale H, Gelaye Y 2024. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Scientific World Journal 2126734. https://doi.org/10.1155/2024/2126734
Gelaye Y 2025. Exploring the Potential of Agro-Nanotechnology in African Agriculture: A Path to Sustainable Development-Systematic Review. Scientific World Journal 9073364. https://doi.org/10.1155/tswj/9073364
Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Toulmin C 2010. Food security: The challenge of feeding 9 billion people. Science 327(5967): 812–818. https://doi.org/10.1126/science.1185383
Goap A, Sharma D, Shukla AK, Krishna CR 2018. An IoT based smart irrigation management system using machine learning and open source technologies. Computers and Electronics in Agriculture 155: 41–49. https://doi.org/10.1016/j.compag.2018.09.040
Gwyther ME, Jenkins M 1998. Migrant farmworker children: health status, barriers to care, and nursing innovations in health care delivery. J Pediatr Health Care 12(2):60-6. https://doi.org/10.1016/s0891-5245(98)90223-1
Hassan KS, Islam MN, Billah MM, Islam MM, Jahan MS 2024. Effective extension and access to education drive optimal adoption of climate-smart agriculture interventions in affected tidal floodplains: A case study. Heliyon 10(11):e31616. https://doi.org/10.1016/j.heliyon.2024.e31616
Hutchinson GK, Nguyen LX, Ames ZR, Nemali K, Ferrarezi RS 2025. Substrate system outperforms water-culture systems for hydroponic strawberry production. Front Plant Sci 16(12):1469430. https://doi.org/10.3389/fpls.2025.1469430
Kamilaris A, Prenafeta-Boldú FX 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147: 70–90. https://doi.org/10.1016/j.compag.2018.02.016
Kalischuk M, Paret ML, Freeman JH, Raj D, Da Silva S, Eubanks S, Wiggins DJ, Lollar M, Marois JJ, Mellinger HC, Das J 2019. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon. Plant Dis 103(7):1642-1650. https://doi.org/10.1094/PDIS-08-18-1373-RE
Klerkx L, Jakku E, Labarthe P 2019. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS - Wageningen Journal of Life Sciences 89: 1–16. https://doi.org/10.1016/j.njas.2019.100315
Kozai T, Niu G, Takagaki M 2019. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production. Academic Press: Cambridge, MA, USA.
Mattsson E, Persson UM, Ostwald M, Nissanka SP 2012. REDD+ readiness implications for Sri Lanka in terms of reducing deforestation. J Environ Manage 100:29-40. https://doi.org/10.1016/j.jenvman.2012.01.018
Majsztrik JC, Fernandez RT, Fisher PR, Hitchcock DR, Lea-Cox J, Owen JS Jr, Oki LR, White SA 2017. Water Use and Treatment in Container-Grown Specialty Crop Production: A Review. Water Air Soil Pollut 228(4):151. https://doi.org/10.1007/s11270-017-3272-1
Miller T, Mikiciuk G, Durlik I, Mikiciuk M, Łobodzińska A, Śnieg M 2025. The IoT and AI in Agriculture: The Time Is Now-A Systematic Review of Smart Sensing Technologies. Sensors 25(12):3583. https://doi.org/10.3390/s25123583
Njenga MW, Mugwe JN, Mogaka H, Nyabuga G, Kiboi M, Ngetich F, Mucheru-Muna M, Sijali I, Mugendi D 2021. Communication factors influencing adoption of soil and water conservation technologies in the dry zones of Tharaka-Nithi County, Kenya. Heliyon 7(10):e08236. https://doi.org/10.1016/j.heliyon.2021.e08236
Opio C 2001. Biological and social feasibility of Sesbania fallow practice in small holder agricultural farms in developing countries: a Zambian case study. Environ Manage 27(1):59-74. https://doi.org/10.1007/s002670010134
Odintsov Vaintrub M, Levit H, Chincarini M, Fusaro I, Giammarco M, Vignola G 2021. Review: Precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal 15(3):100143. https://doi.org/10.1016/j.animal.2020.100143
Opara IK, Opara UL, Okolie JA, Fawole OA 2024. Machine Learning Application in Horticulture and Prospects for Predicting Fresh Produce Losses and Waste: A Review. Plants 13(9):1200. https://doi.org/10.3390/plants13091200
Ruett M, Dalhaus T, Whitney C, Luedeling E 2022. Assessing expected utility and profitability to support decision-making for disease control strategies in ornamental heather production. Precis Agric 23(5):1775-1800. https://doi.org/10.1007/s11119-022-09909-z
Sihag S, Punia H, Baloda S, Singal M, Tokas J 2021. Nano-Based Fertilizers and Pesticides: For Precision and Sustainable Agriculture. J Nanosci Nanotechnol 21(6):3351-3366. https://doi.org/10.1166/jnn.2021.19016
Singh R, Singh S 2025. A Review of Indian-Based Drones in the Agriculture Sector: Issues, Challenges, and Solutions. Sensors 25(15):4876. https://doi.org/10.3390/s25154876
Subramanian A 2023. Sustainable agriculture and GM crops: the case of Bt cotton impact in Ballari district of India. Front Plant Sci 1102395. https://doi.org/10.3389/fpls.2023.1102395
Sharma A, Sharma A, Tselykh A, Bozhenyuk A, Choudhury T, Alomar MA, Sánchez-Chero M 2023. Artificial intelligence and internet of things oriented sustainable precision farming: Towards modern agriculture. Open Life Sci 18(1):20220713. https://doi.org/10.1515/biol-2022-0713
Taheri F, D'Haese M, Fiems D, Azadi H 2022. Facts and fears that limit digital transformation in farming: Exploring barriers to the outreach of wireless sensor networks in Southwest Iran. PLoS One 17(12):e0279009. https://doi.org/10.1371/journal.pone.0279009
Tilman D, Balzer C, Hill J, Befort BL 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108(50): 20260–20264. https://doi.org/10.1073/pnas.1116437108
Tsouros DC, Bibi S, Sarigiannidis PG 2019. A review on UAV-based applications for precision agriculture. Remote Sensing 11(22): 2597. https://doi.org/10.3390/info10110349
Zhang Y, Wang G, Li L, Huang M 2025. A Monitoring Method for Agricultural Soil Moisture Using Wireless Sensors and the Biswas Model. Agriculture 15(3): 344. https://doi.org/10.3390/agriculture15030344
Zhang D, Du Q, Zhang Z, Jiao X, Song X, Li J 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. Sci Rep 7(7):43461. https://doi.org/10.1038/srep43461
Wittwer SH 1975. Food production: technology and the resource base. Science 188(4188):578-84. https://doi.org/10.1126/science.188.4188.578
Wolfert S, Ge L, Verdouw C, Bogaardt MJ 2017. Big data in smart farming – A review. Agricultural Systems 153: 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Djair Alves da Mata, Teonis Batista da Silva, Romildo Araújo Macena, Flaviano Moura Pereira, Fernanda de Sousa Veloso, Cícero Henrique Sá, Isabele Rodrigues de Oliveira, Geiziane de Fátima da Silva

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta revista oferece acesso livre imediato ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização mundial do conhecimento.
A partir da publicação realizada na revista os autores possuem copyright e direitos de publicação de seus artigos sem restrições.
A Revista Fronteiras: Journal of Social, Technological and Environmental Science segue os preceitos legais da licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional.
