Caracterização da Composição Química dos Sedimentos e a Presença de Coliformes Termotolerantes em Diferentes Sub-Bacias Hidrográficas do Rio Grande

Autores/as

DOI:

https://doi.org/10.21664/2238-8869.2025v14i2.p315-329

Palabras clave:

nascente, sedimento, metais tóxicos, uso e ocupação do solo

Resumen

A água e os sedimentos em nascentes são influenciados por fatores naturais e antrópicos. Em áreas rurais, a atividade agropecuária exerce influência na dinâmica e estrutura dos ecossistemas de nascentes. Este estudo teve como objetivo verificar diferenças na composição química dos sedimentos e na presença de coliformes termotolerantes na água de 15 nascentes da região da Serrinha, localizadas em paisagem rural de cinco sub-bacias do Rio Grande, no Cerrado Mineiro. Foram analisadas concentrações de metais e nutrientes, além da estimativa da densidade de coliformes termotolerantes, a fim de correlacionar esses parâmetros com o uso e ocupação da terra. Os elementos chumbo, cromo, níquel e manganês não foram detectados nas amostras, dentro dos limites do equipamento utilizado. A análise de componentes principais (ACP) indicou que a sub-bacia 3 apresentou maiores concentrações de cálcio, enquanto a sub-bacia 6 se destacou pelo teor elevado de fósforo, alumínio e magnésio. A sub-bacia 2 apresentou altos níveis de potássio e ferro, enquanto as sub-bacias 1 e 4 mostraram as maiores concentrações de cobre e coliformes termotolerantes, possivelmente associadas à presença de áreas de pastagem próximas. Os valores de coliformes nestas sub-bacias sugerem influência direta da atividade pecuária, reforçando a necessidade de práticas de manejo que impeçam o contato de dejetos animais com a água das nascentes. Os resultados indicam que a dinâmica dos elementos químicos nos sedimentos está diretamente relacionada ao uso da terra na região. Esses achados reforçam a importância da preservação adequada da vegetação ciliar e do controle da poluição difusa para garantir a qualidade dos recursos hídricos.

Citas

Bagheri H, Zare Abyaneh H, Izady A 2021. Nutrient and colloid leaching from un-amended versus vermicompost-amended soil. Soil and Tillage Research 213: 105092. DOI: https://doi.org/10.1016/j.still.2021.105092

Beauchamp C, Fridovich, I 1971. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Analytical Biochemistry 44: 276-287. DOI: http://dx.doi.org/10.1016/0003-2697(71)90370-8

Brasil 2020. Instrução Normativa No 61, de 08 de julho de 2020. Estabelece as regras sobre definições, exigências, especificações, garantias, tolerâncias, registro, embalagem e rotulagem dos fertilizantes orgânicos e dos biofertilizantes, destinados à agricultura.

Bremner JM, Mulvaney, CS 1982. Nitrogen-Total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, Page, A.L., Miller, R.H. & Keeney, D.R. Eds., American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 595-624.

DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c31

Brinton WF 2000. Compost quality standards and guidelines, Final Report by Woods End Research Laboratories for the New York State Association of Recyclers.

Brunetto G, Marques ACR, Trentin E, Sete PB, Soares CRFS, Ferreira PAA, Melo GWB, Zalamena J, da Silva LOS, Marchezan C, da Silva ICB, dos Santos JPJ, Morsch L 2023. Arbuscular mycorrhizal fungi inoculation as strategy to mitigate copper toxicity in young field-grown vines. Ciência e Técnica Vitivinícola 38: 60-66. DOI: https://doi.org/10.1051/ctv/ctv20233801060

Campillo-Cora C, Fernández-Calviño D, Pérez-Rodríguez P, Fernández-Sanjurjo MJ, Núñez-Delgado A, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC 2019. Copper and zinc in rhizospheric soil of wild plants growing in long-term acid vineyard soils. Insights on availability and metal remediation. Science of The Total Environment 672: 389-99. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.301

Chance B, Maehly AC 1955. Assay of Catalase and Peroxidase. Methods in Enzymology 2: 764-775. DOI: http://dx.doi.org/10.1016/S0076-6879(55)02300-8

Chileshe MN, Syampungani S, Sandell Festin E, Tigabu M, Daneshvar A, Odén PC 2020. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: implications for pollution risk and restoration. Journal of Forestry Research 31(4): 1283-1293. DOI: https://doi.org/10.1007/s11676-019-00921-0

Cipoleta NS, Simões da Silva LF, Lopes-Assad MLRC 2019. Use of organic materials to attenuate copper contamination of Bordeaux mixture. Ambiência 15(2): 289-307. DOI: https://doi.org/10.5935/ambiencia.2019.02.01

CONAMA 2008. Conselho Nacional do Meio Ambiente. Resolução nº 396, de 3 de abril de 2008. Diário Oficial da União 66: 64-68.

Covre WP, Carvalho CS, Campos ML, Rodrigues MTL, Silva CF, Fernandes AR, Alleoni LRF. 2022. Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. Journal of Hazardous Materials 421: 126688. DOI: https://doi.org/10.1016/j.jhazmat.2021.126688

Comissão de Química e Fertilidade do Solo (CQFS). 2016. Manual de calagem e adubação para os estados do Rio Grande do Sul e Santa Catarina, 11. ed., Porto Alegre: Sociedade Brasileira de Ciência do Solo-Núcleo Regional Sul, 376 p.

CPHEEO 2016. Municipal Solid Waste Management Manual Part II: The manual, Central Public Health and Environmental Engineering Organisation (CPHEEO) Ministry of Urban Development.

Daniel JB, Brugger D, van der Drift S, van der Merwe D, Kendall N, Windisch W, Doelman J, Martín-Tereso J 2023. Zinc, copper, and manganese homeostasis and potential trace metal accumulation in dairy cows: longitudinal study from late lactation to subsequent mid-lactation. The Journal of Nutrition 153(4): 1008-1018. DOI: https://doi.org/10.1016/j.tjnut.2023.02.022

De Conti L, Ceretta CA, Tiecher TL, da Silva LOS, Tassinari A, Somavilla LM, Mimmo T, Cesco S, Brunetto G2018. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. Ecotoxicology and Environmental Safety 163: 19-27. DOI: https://doi.org/10.1016/j.ecoenv.2018.07.045

De Conti L, Ceretta CA, Melo GWB, Tiecher TL, Silva LOS, Garlet LP, Mimmo T, Cesco S, Brunetto 2019. Intercropping of young grapevines with native grasses for phytoremediation of Cu-contaminated soils. Chemosphere 216: 147-156. DOI: https://doi.org/10.1016/j.chemosphere.2018.10.134

Ehiomogue P 2023. Vermicompost remediation of contaminated soil: a mini review. Annals of the Faculty of Engineering Hunedoara-International Journal of Engineering 21(3): 153-160.

Facco DB, Trentin E, Drescher GL, Hammerschmitt RK, Ceretta CA, da Silva LS, Brunetto G, Ferreira PAA 2023. Chemical speciation of copper and manganese in soil solution and young grapevine growth in copper contaminated soil with amendment application. Pedosphere 33(3): 496-507. DOI: https://doi.org/10.1016/j.pedsph.2022.06.060

Fang W, Delapp RC, Kosson DS, van der Sloot HA, Liu J 2017. Release of heavy metals during long-term land application of sewage sludge compost: Percolation leaching tests with repeated additions of compost. Chemosphere 169: 271-280. DOI: https://doi.org/10.1016/j.chemosphere.2016.11.086

Filipović L, Defterdarović J, Chen R, Krevh V, Gerke HH, Baumgartl T, Kovač Z, Ondrašek G, Ružičić S, He H, Dusek J, Filipović V 2023. Leached copper correlation with dissolved organic carbon in sloped vineyard soil. Water 15(4): 800. DOI: https://doi.org/10.3390/w15040800

Giannopolitis CN, Ries SK 1977. Superoxide dismutase I. Occurrence in higher plants. Plant Physiology 59: 309-314. DOI: https://doi.org/10.1104/pp.59.2.309

Hamedi A, Zarabi M, Mahdavi S 2021. Comparative study on the effect of common ions on Zn2+ and Cu2+ adsorption by cattle manure vermicompost (VC) and VC-amended soil. Communications in Soil Science and Plant Analysis 52(22): 2821-2836. DOI: https://doi.org/10.1080/00103624.2021.1966438

IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. https://www.fao.org/3/i3794en/I3794en.pdf

Jordán MM, Almendro-Candel MB, Navarro-Pedreño J, Pardo F, García-Sánchez E, Bech J 2020. Bioavailability, mobility and leaching of phosphorus in a Mediterranean agricultural soil (ne Spain) amended with different doses of biosolids. Environmental Geochemistry and Health: 1-8. DOI: https://doi.org/10.1007/s10653-020-00772-3

Kumar V, Pandita S, Sidhu GPS, Sharma A, Khanna K, Kaur P, Bali AS, Setia R 2021. Copper bioavailability, uptake, toxicity and tolerance in plants: a comprehensive review. Chemosphere 262: 127810. DOI: https://doi.org/10.1016/j.chemosphere.2020.127810

Li Q, Chen H-H, Qi Y-P, Ye X, Yang L-T, Huang Z-R, Chen L-S 2019. Excess copper effects on growth, uptake of water and nutrients, carbohydrates, and PSII photochemistry revealed by OJIP transients in Citrus seedlings. Environmental Science and Pollution Research 26(29): 30188-30205. DOI: https://doi.org/10.1007/s11356-019-06170-2

Liu B, Wu C, Pan P, Fu Y, He Z, Wu L, Li Q 2019. Remediation effectiveness of vermicompost for a potentially toxic metal-contaminated tropical acidic soil in China. Ecotoxicology and Environmental Safety 182: 109394. DOI: https://doi.org/10.1016/j.ecoenv.2019.109394

Marques ACR, Tiecher TL, Brunetto G, Vendruscolo D, De Conti L, Ambrosini VG, Miotto A, Rosa DJ, Silva ICB, Trentin E, Ferreira PAA, Jacques RJS, Pescador R, Comin JJ, Ceretta CAC, Melo GWB, Parent L-É 2023. Phytoremediation of Cu‐contaminated vineyard soils in Brazil: A compendium of Brazilian pot studies. Journal of Environmental Quality 52(5): 1024-1036. DOI: https://doi.org/10.1002/jeq2.20503

Miotto A, Ceretta CAC, Girotto E, Trentin G, Kaminski J, De Conti L, Moreno T, Elena B, Brunetto G 2017. Copper accumulation and availability in sandy, acid, vineyard soils. Communications in Soil Science and Plant Analysis 48(10): 1167-1183. DOI: https://doi.org/10.1080/00103624.2017.1341908

Mir AR, Pichtel J, Hayat S 2021a. Copper: uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. Biometals 34(4): 737-759. DOI: https://doi.org/10.1007/s10534-021-00306-z

Mir AR, Alam P, Hayat S 2021b. Effect of different levels of soil applied copper on the morpho-physiological, photochemical, and antioxidant system of Brassica juncea. Journal of Soil Science and Plant Nutrition 21: 3477-3492. DOI: https://doi.org/10.1007/s42729-021-00621-x

Morsch L, Marques ACR, Trentin E, Oliveira FN, Andreolli T, Barbosa JGP, Ferreira MM, Moura-Bueno JM, Comin JJ, Loss A, Lourenzi CR, Brunetto G2024. Diversity and botanical composition of native species in the Pampa biome in vineyards cultivated on soils with high levels of copper, zinc and manganese and phytoremediation potential. Chemosphere 349: 140819. DOI: https://doi.org/10.1016/j.chemosphere.2023.140819

Murphy J, Riley JPA 1962. Modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31-36. DOI: https://doi.org/10.1016/S0003-2670(00)88444-5

Rangel TS, Santana NA, Jacques RJS, Ramos RF, Scheid DL, Koppe E, Tabaldi LA, Silveira AO 2023. Organic fertilization and mycorrhization increase copper phytoremediation by Canavalia ensiformis in a sandy soil. Environmental Science & Pollution Research 30(26): 68271-68289. DOI: https://doi.org/10.1007/s11356-023-27126-7

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at: http://www.r-project.org/

Santana NA, Ferreira PAA, Soriani HH, Brunetto G, Nicoloso FT, Antoniolli ZI, Jacques RJS2015. Interaction between arbuscular mycorrhizal fungi and vermicompost on copper phytoremediation in a sandy soil. Applied Soil Ecology 96: 172-182. DOI: https://doi.org/10.1016/j.apsoil.2015.08.001

Santana NA, Rabuscke CM, Soares VB, Soriani HH, Nicoloso FT, Jacques RJS2018. Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis. Environmental Science and Pollution Research 25: 12663-12677. DOI: https://doi.org/10.1007/s11356-018-1533-1

Schwalbert R, Stefanello LO, Schwalbert RA, Tarouco CP, Drescher GL, Trentin E, Tassinari A, Silva IB da, Brunetto G, Nicoloso FT 2021. Soil tillage affects soybean growth and promotes heavy metal accumulation in seeds. Ecotoxicology and Environmental Safety 216: 112191. DOI: https://doi.org/10.1016/j.ecoenv.2021.112191

Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Natasha, Murtaza G, Dumat C, Shahid M 2020. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 259: 127436. DOI: https://doi.org/10.1016/j.chemosphere.2020.127436

Shahkolaie SS, Baranimotlagh M, Dordipour E, Khormali F2020. Effects of inorganic & organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany 128: 132-140. DOI: https://doi.org/10.1016/j.sajb.2019.10.007

Shrestha P, Bellitürk K, Görres JH 2019. Phytoremediation of heavy metal-contaminated soil by switchgrass: A comparative study utilizing different composts and coir fiber on pollution remediation, plant productivity, & nutrient leaching. International Journal of Environmental Research and Public Health 6(7): 1261. DOI: https://doi.org/10.3390/ijerph16071261

Silva JAF, García AC, Lima AS, Souza CCB. Amaral Sobrinho NMB 2022a. Effect of short-term pig slurry amendment of soil on humified organic matter and its relationship with the dynamics of heavy metals and metals uptake by plants. Journal of Environmental Science and Health, Part A 57(11): 958-969. DOI: https://doi.org/10.1080/10934529.2022.2132795

Silva ICB, Marques ACR., Quadros FF, Sans G, Soares VM, De Conti L, Ceretta CA, Ferreira PAA, Toselli M, Brunetto G 2022b. Spatial variation of herbaceous cover species community in Cu-contaminated vineyards in Pampa biome. Environmental Science and Pollution Research 27: 13348-13359. DOI: https://doi.org/10.1007/s11356-022-21738-1

Teixeira PC, Donagemma GK, Fontana A, Teixeira W G 2017. Manual de métodos de análise de solo.

Trentin E, Cesco S, Pii Y, Valentinuzzi F, Celletti S, Feil SB, Alzate Zuluaga MY, Ferreira PAA, Ricachenevsky FK, Stefanello LO, De Conti L, Brunetto G, Mimmo T 2022. Plant species and pH dependent responses to copper toxicity. Environmental and Experimental Botany 196: 104791. DOI: https://doi.org/10.1016/j.envexpbot.2022.104791

Vione EL, Silva LS, Cargnelutti Filho A, Aita NT, de Freitas de Morais A, Kokkonen da Silva AA 2018. Caracterização química de compostos e vermicompostos produzidos com casca de arroz e dejetos animais. Revista Ceres 65: 65-73. DOI: https://doi.org/10.1590/0034-737x201865010009

Wang Y, Xu YA, Li D, Tang BC, Man SL, Jia YF, Xu H 2018. Vermicompost and biochar as bio-conditioners to immobilize heavy metal & improve soil fertility on cadmium contaminated soil under acid rain stress. Science of the Total Environment 621: 1057-1065. DOI: https://doi.org/10.1016/j.scitotenv.2017.10.121

Wang X, Xue J, He M, Qi H, Wang S2024. The effects of vermicompost and steel slag amendments on the physicochemical properties and bacterial community structure of acidic soil containing copper sulfide mines. Applied Sciences 14(3): 1289. DOI: https://doi.org/10.3390/app14031289

Zeng Q, Ling Q, Wu J, Yang Z, Liu R, Qi Y 2019. Excess copper-induced changes in antioxidative enzyme activity, mineral nutrient uptake and translocation in sugarcane seedlings. Bulletin of Environmental Contamination and Toxicology 103(6): 834-840. DOI: https://doi.org/10.1007/s00128-019-02735-6

Zeraik AE, Souza FS, Fatibello-Filho O, Leite OD 2008. Desenvolvimento de um spot test para o monitoramento da atividade da peroxidase em um procedimento de purificação. Química Nova 31: 731-734. DOI: https://doi.org/10.1590/S0100-40422008000400003

Publicado

2025-06-05

Cómo citar

VIEIRA, Lelisberto Baldo; PANARELLI, Eliana Aparecida; FUZZO, Daniela Fernanda da Silva; MILLAN, Rodrigo Ney. Caracterização da Composição Química dos Sedimentos e a Presença de Coliformes Termotolerantes em Diferentes Sub-Bacias Hidrográficas do Rio Grande. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 14, n. 2, p. 315–329, 2025. DOI: 10.21664/2238-8869.2025v14i2.p315-329. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/7896. Acesso em: 9 jun. 2025.