Diversidade de Microrganismos no Trato Intestinal e Resíduos Digestivos de Trigoniulus corallinus

Autores/as

DOI:

https://doi.org/10.21664/2238-8869.2023v12i3.p318-333

Palabras clave:

microbiota associada ao trato intestinal, FBN no trato intestinal, enzimas celulolíticas

Resumen

O objetivo deste trabalho foi avaliar a comunidade microbiana associada ao trato intestinal do diplópode Trigoniulus corallinus. Os diplópodes foram coletados e incubados em dietas com serrapilheira de grama batatais (Paspalum notatum) e sabiá (Mimosa caesalpinifolia). A análise do gene 16S DNA por DGGE revelou diversidade microbiana condicionada pela dieta oferecida até os 45 dias. Após este período o efeito não foi mais visível. A comunidade associada aos coprólitos e ao tipo de serrapilheira distribui-se em agrupamentos separados das amostras oriundas do trato intestinal. O mesmo não foi observado na avaliação da comunidade de actinomicetos, onde o grande diferencial para divisão de grupos foi a dieta. Os animais alimentados com serrapilheira de grama mostraram uma comunidade diversa e não influenciada pelo tempo ou compartimentalização. As amostras associadas à serrapilheira e aos coprólitos foram 80% similares às do trato intestinal. Todas as amostragens tiveram genes nifH detectados via PCR. Há evidências de FBN no trato intestinal do diplópode. A comunidade de procariotos foi influenciada pela dieta oferecida até os 45 dias e a comunidade de actinomicetos foi condicionada em função da dieta.

Citas

ANTUNES, L. F. D. S.; VAZ, A. F. D. S.; CORREIA, M. E. F. Gongocompostagem: Técnica Sustentável para a Obtenção de Composto Orgânico para o Cultivo de Mudas de Brócolis. Fronteiras: Journal of Social, Technological and Environmental Science, v. 10, n. 3, p. 185–194, 2021. Disponível em: https://doi.org/10.21664/2238-8869.2021v10i3.p185-194
BYZOV, B. A.; TRETYAKOVA, E. B.; ZVYAGINTSEV, D. G.; CLAUS, H.; FILIP, Z. Effects of soil invertebrates on the survival of some genetically engineered bacteria in leaf litter and soil. Biology and Fertility of Soils, v. 23, n. 3, p. 221–228, 1996. Disponível em: https://doi.org/10.1007/BF00335948
BYZOV, B. A.; VU NGUYEN THANH; BABJEVA, I. P. Interrelationships between yeasts and soil diplopods. Soil Biology and Biochemistry, v. 25, n. 8, p. 1119–1126, 1993. Disponível em: https://doi.org/10.1016/0038-0717(93)90160-D
CAZEMIER, A. E.; HACKSTEIN, J. H. P.; OP DEN CAMP, H. J. M.; ROSENBERG, J.; VAN DER DRIFT, C. Bacteria in the Intestinal Tract of Different Species of Arthropods. Microbial Ecology, v. 33, n. 3, p. 189–197, 1997. Disponível em: https://doi.org/10.1007/s002489900021
CORREIA, D. S.; PASSOS, S. R.; PROENÇA, D. N.; MORAIS, P. V.; XAVIER, G. R.; CORREIA, M. E. F. Microbial diversity associated to the intestinal tract of soil invertebrates. Applied Soil Ecology, v. 131, p. 38–46, 2018. Disponível em: https://doi.org/10.1016/j.apsoil.2018.07.009
CORREIA, M. E. F. Distribuição, preferência alimentar e transformação de serrapilheira por diplópodes em sistemas florestais. 2003. Tese (Doutorado em Agronomia - Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2003.
HUNGATE, R. E. Studies on Cellulose Fermentation: II. An Anaerobic Cellulose-decomposing Actinomycete, Micromonospora propionici, N. Sp. Journal of Bacteriology, v. 51, n. 1, p. 51–56, 1946.
INDRAYANI, Y.; ANWARI, S. Effect of termite activity on soil chemical properties using baiting systems at an arboretum area in Pontianak, West Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, v. 22, n. 4, 2021. Disponível em: https://doi.org/10.13057/biodiv/d220461. Acesso em: 27 jun. 2023.
KNAPP, B. A.; PODMIRSEG, S. M.; SEEBER, J.; MEYER, E.; INSAM, H. Diet-related composition of the gut microbiota of Lumbricus rubellus as revealed by a molecular fingerprinting technique and cloning. Soil Biology and Biochemistry, v. 41, n. 11, p. 2299–2307, 2009 a. Disponível em: https://doi.org/10.1016/j.soilbio.2009.08.011
KNAPP, B. A.; SEEBER, J.; PODMIRSEG, S. M.; RIEF, A.; MEYER, E.; INSAM, H. Molecular fingerprinting analysis of the gut microbiota of Cylindroiulus fulviceps (Diplopoda). Pedobiologia, v. 52, n. 5, p. 325–336, 2009 b. Disponível em: https://doi.org/10.1016/j.pedobi.2008.11.005
LEFEBVRE, T.; MIAMBI, E.; PANDO, A.; DIOUF, M.; ROULAND-LEFÈVRE, C. Gut-specific actinobacterial community structure and diversity associated with the wood-feeding termite species, Nasutitermes corniger (Motschulsky) described by nested PCR-DGGE analysis. Insectes Sociaux, v. 56, n. 3, p. 269–276, 2009. Disponível em: https://doi.org/10.1007/s00040-009-0020-6
MÁRIALIGETI, K.; CONTRERAS, B.; BARABÁS, G.; HEYDRICH, M.; SZABÓ, I. M. True intestinal actinomycetes of millipedes (Diplopoda). Journal of invertebrate pathology, v. 45, n. 1, p. 120–121, 1985.
MEN’KO, E. V.; CHERNOV, I. Yu.; BYZOV, B. A. Interrelationships between yeast fungi and collembolans in soil. Microbiology, v. 75, n. 6, p. 708–715, 2006. Disponível em: https://doi.org/10.1134/S0026261706060142
MILLING, A.; SMALLA, K.; MAIDL, F. X.; SCHLOTER, M.; MUNCH, J. C. Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant and Soil, v. 266, n. 1, p. 23–39, 2005. Disponível em: https://doi.org/10.1007/s11104-005-4906-4
MUYZER, G.; DE WAAL, E. C.; UITTERLINDEN, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, v. 59, n. 3, p. 695–700, 1993.
PALANIVELOO, K. et al. Food Waste Composting and Microbial Community Structure Profiling. Processes, v. 8, n. 6, p. 723, 2020. Disponível em: https://doi.org/10.3390/pr8060723
PASSOS, S. R.; REIS JUNIOR, F. B. dos; RUMJANEK, N. G.; MENDES, I. de C.; BAPTISTA, M. J.; XAVIER, G. R. Atividade enzimática e perfil da comunidade bacteriana em solo submetido à solarização e biofumigação. Pesquisa Agropecuária Brasileira, v. 43, n. 7, p. 879–885, 2008. Disponível em: https://doi.org/10.1590/S0100-204X2008000700012
POLY, F.; MONROZIER, L. J.; BALLY, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, v. 152, n. 1, p. 95–103, 2001. Disponível em: https://doi.org/10.1016/s0923-2508(00)01172-4
SARDAR, P.; ŠUSTR, V.; CHROŇÁKOVÁ, A.; LORENC, F. Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Frontiers in Ecology and Evolution, v. 10, 2022. Disponível em: https://www.frontiersin.org/articles/10.3389/fevo.2022.931986. Acesso em: 6 jul. 2023.
ŠUSTR, V.; ŠIMEK, M.; FAKTOROVÁ, L.; MACKOVÁ, J.; TAJOVSKÝ, K. Release of greenhouse gases from millipedes as related to food, body size, and other factors. Soil Biology and Biochemistry, v. 144, p. 107765, 2020. Disponível em: https://doi.org/10.1016/j.soilbio.2020.107765
SUTTHISA, W.; PARAPHONG, W.; PIMVICHAI, P. Plant Growth-promoting Ability and Pathogen Inhibitory Effect of Actinomycetes Isolated from Fecal Pellets of the Giant Millipede Thyropygus resimus (Diplopoda). Journal of Pure and Applied Microbiology, v. 17, n. 2, p. 849–860, 2023. Disponível em: https://doi.org/10.22207/JPAM.17.2.11
TEIXEIRA, K. R. S. BASES MOLECULARES E GENÉTICA DA FIXAÇÃO DE NITROGÊNIO: Documentos 32. Seropédica-RJ: Embrapa Agrobiologia, 1997. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPAB-2010/27221/1/doc032.pdf. Acesso em: 2 jul. 2023.
TOKUDA, G.; WATANABE, H. Hidden cellulases in termites: revision of an old hypothesis. Biology Letters, v. 3, n. 3, p. 336–339, 2007. Disponível em: https://doi.org/10.1098/rsbl.2007.0073
VON WINTZINGERODE, F.; GÖBEL, U. B.; STACKEBRANDT, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, v. 21, n. 3, p. 213–229, 1997. Disponível em: https://doi.org/10.1111/j.1574-6976.1997.tb00351.x
WARNECKE, F. et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, v. 450, n. 7169, p. 560–565, 2007. Disponível em: https://doi.org/10.1038/nature06269
ZANI, S.; MELLON, M. T.; COLLIER, J. L.; ZEHR, J. P. Expression of nifH Genes in Natural Microbial Assemblages in Lake George, New York, Detected by Reverse Transcriptase PCR. Applied and Environmental Microbiology, v. 66, n. 7, p. 3119–3124, 2000.
ZHAN, Y.; CHANG, Y.; TAO, Y.; ZHANG, H.; LIN, Y.; DENG, J.; MA, T.; DING, G.; WEI, Y.; LI, J. Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods. Environmental Science and Pollution Research, v. 30, n. 4, p. 8956–8966, 2023. Disponível em: https://doi.org/10.1007/s11356-022-20388-7
ZILLI, J. E.; SANTOS, E. L.; HAGLER, L. M.; NEVES, M. C. P.; RUMJANEK, N. G. Desenvolvimento de meio de cultivo para microrganismos do solo utilizando solo como fonte de nutrientes. In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA2003, Florianópolis-SC. Anais. Florianópolis-SC: Sociedade Brasileira de Microbiologia, 2003.

Publicado

2023-10-27

Cómo citar

PASSOS, Samuel Ribeiro; ANTUNES, Luiz Fernando de Sousa; RUMJANEK, Norma Gouvêa; CORREIA, Maria Elizabeth Fernandes; XAVIER, Gustavo Ribeiro. Diversidade de Microrganismos no Trato Intestinal e Resíduos Digestivos de Trigoniulus corallinus. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 12, n. 3, p. 318–333, 2023. DOI: 10.21664/2238-8869.2023v12i3.p318-333. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/7007. Acesso em: 4 ene. 2025.