Partição de Chuva e Nível Freático em uma Floresta Ripária Tropical nos Domínios da Savana Brasileira

Autores/as

DOI:

https://doi.org/10.21664/2238-8869.2023v12i2.p221-235

Palabras clave:

aquífero, transprecipitação, interceptação negativa, floresta de galeria, cerrado

Resumen

As florestas ripárias contribuem com diversos serviços ecossistêmicos, tais como filtragem de poluentes, controle de erosão, influencia na qualidade da água, entre outros. No entanto, pouco se sabe a respeito do funcionamento hidrológico das florestas que ladeiam os corpos d’água na região da savana brasileira. O objetivo deste trabalho foi caracterizar a partição de chuva e o nível do lençol freático em uma floresta ripária tropical situada nos domínios da savana brasileira. Para isso, mediu-se a precipitação, precipitação interna, interceptação do dossel, interceptação da serrapilheira e o nível do lençol freático. O volume da precipitação, da precipitação interna e, da interceptação do dossel foram, respectivamente, 1685 mm, 1440 mm (85,5%) e, 245 mm (14,5%). No mesmo período, a interceptação da serrapilheira foi de 59,1%. Já o nível do lençol freático teve média de 33,4 cm, com maior aproximação da superfície do solo no período úmido (média de 27,8 cm) do que no período seco (média de 64,3 cm).

Citas

Acharya, B.S., Kharel, G., Zou, C.B., Wilcox, B.P., Halihan, T., 2018. Woody plant encroachment impacts on groundwater recharge: A review. Water (Switzerland) 10. https://doi.org/10.3390/w10101466
Alvares, C.A., Stape, J.L., Sentelhas, P.C., de Moraes Gonçalves, J.L., Sparovek, G., 2013. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728. https://doi.org/10.1127/0941-2948/2013/0507
Arcova, F.C.S., Cicco, V. de, Rocha, P.A.B., 2003. Precipitação efetiva e interceptação das chuvas por floresta de Mata Atlântica em uma microbacia experimental em Cunha-São Paulo. Rev. Árvore 27, 257–262.
Barbier, S., Balandier, P., Gosselin, F., 2009. Influence of several tree traits on rainfall partitioning in temperate and boreal forests: a review. Ann. For. Sci. 66, 602–602. https://doi.org/10.1051/forest/2009041
Bäse, F., Elsenbeer, H., Neill, C., Krusche, A. V., 2012. Differences in throughfall and net precipitation between soybean and transitional tropical forest in the southern Amazon, Brazil. Agric. Ecosyst. Environ. 159, 19–28. https://doi.org/10.1016/j.agee.2012.06.013
Bessi, D., Dias, H.C.T., Tonello, K.C., 2018. Rainfall Partitioning in Fragments of Cerrado Vegetation At Different Stages of Conduction of Natural Regeneration. Rev. Árvore 42. https://doi.org/10.1590/1806-90882018000200015
Campos, J. de O., Chaves, H.M.L., 2020. Tendências e Variabilidades nas Séries Históricas de Precipitação Mensal e Anual no Bioma Cerrado no Período 1977-2010. Rev. Bras. Meteorol. 35, 157–169. https://doi.org/10.1590/0102-7786351019
Carvalho, F., Assunção, H.F. da, Scopel, I., 2013. Partição pluviométrica em fitofisionomias do Cerrado. Mercator 12, 135–147. https://doi.org/10.4215/RM2013.1227.0010
Chang, M., 2002. Forest hydrology: An introduction to water and forests, 1st ed. CRC press.
Chen, S., Cao, R., Yoshitake, S., Ohtsuka, T., 2019. Stemflow hydrology and DOM flux in relation to tree size and rainfall event characteristics. Agric. For. Meteorol. 279, 107753. https://doi.org/10.1016/j.agrformet.2019.107753
Cole, L.J., Stockan, J., Helliwell, R., 2020. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 296, 106891. https://doi.org/10.1016/j.agee.2020.106891
Crockford, R.H., Richardson, D.P., 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrol. Process. 14, 2903–2920. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6
Davie, T., 2008. Fundamentals of hydrology, 2nd ed. Routledge.
De Brito, G.Q., Murta, J.R. de M., Salemi, L.F., 2022. Surface Runoff from an Urban Area Promotes Hydrological Connectivity and Soil Loss in a Tropical Riparian Forest. Water, Air, Soil Pollut. 233, 204. https://doi.org/10.1007/s11270-022-05672-z
Du, J., Niu, J., Gao, Z., Chen, X., Zhang, L., Li, X., van Doorn, N.S., Luo, Z., Zhu, Z., 2019. Effects of rainfall intensity and slope on interception and precipitation partitioning by forest litter layer. CATENA 172, 711–718. https://doi.org/10.1016/j.catena.2018.09.036
Dunkerley, D., 2020. A review of the effects of throughfall and stemflow on soil properties and soil erosion. Precip. partitioning by Veg. 183–214.
Dunkerley, D., 2015. Percolation through leaf litter: What happens during rainfall events of varying intensity? J. Hydrol. 525, 737–746. https://doi.org/10.1016/j.jhydrol.2015.04.039
Duval, T.P., 2019. Rainfall partitioning through a mixed cedar swamp and associated C and N fluxes in Southern Ontario, Canada. Hydrol. Process. 33, 1510–1524. https://doi.org/10.1002/hyp.13414
Dykes, A.P., 1997. Rainfall interception from a lowland tropical rainforest in Brunei. J. Hydrol. 200, 260–279. https://doi.org/10.1016/S0022-1694(97)00023-1
Eliades, M., Bruggeman, A., Djuma, H., Christou, A., Rovanias, K., Lubczynski, M.W., 2022. Testing three rainfall interception models and different parameterization methods with data from an open Mediterranean pine forest. Agric. For. Meteorol. 313, 108755. https://doi.org/10.1016/j.agrformet.2021.108755
Gomez-Peralta, D., Oberbauer, S.F., McClain, M.E., Philippi, T.E., 2008. Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. For. Ecol. Manage. 255, 1315–1325. https://doi.org/10.1016/j.foreco.2007.10.058
González, E., Felipe-Lucia, M.R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G., Sher, A.A., 2017. Integrative conservation of riparian zones. Biol. Conserv. 211, 20–29. https://doi.org/10.1016/j.biocon.2016.10.035
Groppo, J.D., Salemi, L.F., Moraes, J.M., Trevisan, R., Seghesi, G.B., Martinelli, L.A., 2019. Capacidade de retenção de água do dossel vegetativo : comparação entre Mata Atlântica e plantação florestal de eucalipto Canopy water retention capacity : comparison between the Atlantic Rainforest and the forest plantation of eucalypt. Ciência Florest. 29, 96–104.
Hammer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics software package for education and data analysis.
Helvey, J.D., Patric, J.H., 1965. Canopy and litter interception of rainfall by hardwoods of eastern United States. Water Resour. Res. 1, 193–206. https://doi.org/10.1029/WR001i002p00193
Hilary, B., Chris, B., North, B.E., Angelica Maria, A.Z., Sandra Lucia, A.Z., Carlos Alberto, Q.G., Beatriz, L.G., Rachael, E., Andrew, W., 2021. Riparian buffer length is more influential than width on river water quality: A case study in southern Costa Rica. J. Environ. Manage. 286, 112132. https://doi.org/10.1016/j.jenvman.2021.112132
Hirata, R., Suhogusoff, A.V., Marcellini, S.S., Villar, P.C., Marcellini, L., 2019. As águas subterrâneas e sua importância ambiental e socioeconômica para o Brasil.
Hussain, F., Wu, R.-S., Shih, D.-S., 2022. Water table response to rainfall and groundwater simulation using physics-based numerical model: WASH123D. J. Hydrol. Reg. Stud. 39, 100988. https://doi.org/10.1016/j.ejrh.2022.100988
Jiang, Z.-Y., Zhi, Q.-Y., Van Stan, J.T., Zhang, S.-Y., Xiao, Y.-H., Chen, X.-Y., Yang, X., Zhou, H.-Y., Hu, Z.-M., Wu, H.-W., 2021. Rainfall partitioning and associated chemical alteration in three subtropical urban tree species. J. Hydrol. 603, 127109. https://doi.org/10.1016/j.jhydrol.2021.127109
Johnson, L.R. ljohnson@longwoodgarden. org, Trammell, T.L.E., Bishop, T.J., Barth, J., Drzyzga, S., Jantz, C., 2020. Squeezed from all sides: Urbanization, invasive species, and climate change threaten riparian forest buffers. Sustain. 12, 1–23. https://doi.org/10.3390/su12041448
Kermavnar, J., Vilhar, U., 2017. Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst. 20, 1373–1387. https://doi.org/10.1007/s11252-017-0689-7
Levia, D.F., Germer, S., 2015. A review of stemflow generation dynamics and stemflow-environment interactions in forests and shrublands. Rev. Geophys. 53, 673–714. https://doi.org/10.1002/2015RG000479
Lima, P.R.A., Leopoldo, P.L., 2000. Quantificação de componentes hidrológica de uma mata ciliar, através do balanço de massas. Rev. Árvore 24, 241–252.
Llorens, P., Domingo, F., 2007. Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J. Hydrol. 335, 37–54. https://doi.org/10.1016/j.jhydrol.2006.10.032
Lloyd, C.., Marques F., A.D.O., 1988. Spatial variability of throughfall and stemflow measurements in Amazonian rainforest. Agric. For. Meteorol. 42, 63–73. https://doi.org/10.1016/0168-1923(88)90067-6
Loescher, H.W., Powers, J.S., Oberbauer, S.F., 2002. Spatial variation of throughfall volume in an old-growth tropical wet forest, Costa Rica. J. Trop. Ecol. 18, 397–407. https://doi.org/10.1017/S0266467402002274
Lowrance, R., Sheridan, J.M., 2005. Surface Runoff Water Quality in a Managed Three Zone Riparian Buffer. J. Environ. Qual. 34, 1851–1859. https://doi.org/10.2134/jeq2004.0291
Marimon, B.S., Felfili, J.M., de Souza Lima, E., Neto, J.P., 2003. Padrões de distribuição de espécies na mata de galeria do córrego Bacaba Nova Xavantina Mato Grosso em relação a fatores ambientais. Bol. do Herbário Ezechias Paulo Heringer 12.
Metzger, J.P., Bustamante, M.M.C., Ferreira, J., Fernandes, G.W., Librán-Embid, F., Pillar, V.D., Prist, P.R., Rodrigues, R.R., Vieira, I.C.G., Overbeck, G.E., 2019. Why Brazil needs its Legal Reserves. Perspect. Ecol. Conserv. 17, 91–103. https://doi.org/10.1016/j.pecon.2019.07.002
Moura, A.E.S.S. de, Correa, M.M., Silva, E.R. da, Ferreira, R.L.C., Figueiredo, A. de C., Possas, J.M.C., 2009. Interceptação das chuvas em um fragmento de floresta da Mata Atlântica na Bacia do Prata, Recife, PE. Rev. Árvore 33, 461–469.
Naiman, R.J., Décamps, H., McClain, M.E., 2005. Riparia: ecology, conservation and management of streamside communities. Elsevier.
Nytch, C.J., Meléndez-Ackerman, E.J., Pérez, M.-E., Ortiz-Zayas, J.R., 2019. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst. 22, 103–115. https://doi.org/10.1007/s11252-018-0768-4
Oliveira-Filho, A.T., Ratter, J.A., 1995. A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh J. Bot. 52, 141–194. https://doi.org/10.1017/S0960428600000949
Parron, L.M., Bustamante, M.M.C., Markewitz, D., 2011. Fluxes of nitrogen and phosphorus in a gallery forest in the Cerrado of central Brazil. Biogeochemistry 105, 89–104. https://doi.org/10.1007/s10533-010-9537-z
Ramião, J.P., Cássio, F., Pascoal, C., 2020. Riparian land use and stream habitat regulate water quality. Limnologica 82, 125762. https://doi.org/10.1016/j.limno.2020.125762
Ribeiro, J.F., Walter, B.M.T., 2008. As principais fitofisionomias do bioma Cerrado. Cerrado Ecol. e flora 1, 151–212.
Riis, T., Kelly-Quinn, M., Aguiar, F.C., Manolaki, P., Bruno, D., Bejarano, M.D., Clerici, N., Fernandes, M.R., Franco, J.C., Pettit, N., Portela, A.P., Tammeorg, O., Tammeorg, P., Rodríguez-González, P.M., Dufour, S., 2020. Global overview of ecosystem services provided by riparian vegetation. Bioscience 70, 501–514. https://doi.org/10.1093/biosci/biaa041
Sadeghi, S.M.M., Van Stan, J.T., Pypker, T.G., Tamjidi, J., Friesen, J., Farahnaklangroudi, M., 2018. Importance of transitional leaf states in canopy rainfall partitioning dynamics. Eur. J. For. Res. 137, 121–130. https://doi.org/10.1007/s10342-017-1098-4
Santos, H.G. dos, Jacomine, P.K.T., Anjos, L.H.C. dos, Oliveira, V.Á. de, Lumbreras, J.F., Coelho, M.R., Almeida, J.A. de, Araújo Filho, J.C. de, Oliveira, J.B. de, Cunha, T.J.F., 2018. Sistema brasileiro de classificação de solos. Brasília, DF: Embrapa, 2018.
Scheer, M.B., 2011. Mineral nutrient fluxes in rainfall and throughfall in a lowland Atlantic rainforest in southern Brazil. J. For. Res. 16, 76–81. https://doi.org/10.1007/s10310-010-0222-9
Scheliga, B., Tetzlaff, D., Nuetzmann, G., Soulsby, C., 2019. Assessing runoff generation in riparian wetlands: monitoring groundwater–surface water dynamics at the micro-catchment scale. Environ. Monit. Assess. 191. https://doi.org/10.1007/s10661-019-7237-2
Silva Júnior, M.C. da, 2005. Fitossociologia e estrutura diamétrica na mata de galeria do Pitoco, na Reserva Ecológica do IBGE, DF. Cerne 11, 147–158.
Silva Júnior, M.C. da, 2004. Fitossociologia e estrutura diamétrica da mata de galeria do Taquara, na Reserva Ecológica do IBGE, DF. Rev. Árvore 28, 419–428.
Silva Júnior, M.C. da, 1999. Composição florística, fitossociologia e estrutura diamétrica na Mata de galeria do Monjolo, Reserva Ecológica do IBGE (Recor), DF. Bol. do Herbário Ezechias Paulo Heringer 4.
Silva Júnior, M.C. da, Felfili, J.M., Nogueira, P.E., Rezende, A. V, 1998. Análise florística das matas de galeria no Distrito Federal. Cerrado: matas de galeria. Planaltina: EMBRAPA-CPAC 53–84.
Singh, R., Tiwari, A.K., Singh, G.S., 2021. Managing riparian zones for river health improvement: an integrated approach. Landsc. Ecol. Eng. 17, 195–223. https://doi.org/10.1007/s11355-020-00436-5
Staelens, J., De Schrijver, A., Verheyen, K., Verhoest, N.E.C., 2008. Rainfall partitioning into throughfall, stemflow, and interception within a single beech (Fagus sylvatica L.) canopy: influence of foliation, rain event characteristics, and meteorology. Hydrol. Process. 22, 33–45. https://doi.org/10.1002/hyp.6610
Su, L., Xie, Z., Xu, W., Zhao, C., 2019. Variability of throughfall quantity in a mixed evergreen-deciduous broadleaved forest in central China. J. Hydrol. Hydromechanics 67, 225–231. https://doi.org/10.2478/johh-2019-0008
Swanson, F.J., Gregory, S. V., Sedell, J.R., Campbell, A.G., 1982. Land-water interactions: the riparian zone. Anal. Conifer. For. Ecosyst. West. United States 267–291.
Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A.-M., Muller, E., Décamps, H., 2000. Impacts of riparian vegetation on hydrological processes. Hydrol. Process. 14, 2959–2976. https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2959::AID-HYP129>3.0.CO;2-B
Távora, B.E., Koide, S., 2020. Event-Based Rainfall Interception Modeling in a Cerrado Riparian Forest—Central Brazil: An Alternative Approach to the IS Method for Parameterization of the Gash Model. Water 12, 2128. https://doi.org/10.3390/w12082128
Walter, B.M.T., 1996. Distribuição espacial de espécies perenes em uma mata de galeria inundável no Distrito Federal: florística e fitossociologia. Acta Bot. Brasilica 10, 392–393.
Yue, K., De Frenne, P., Fornara, D.A., Van Meerbeek, K., Li, W., Peng, X., Ni, X., Peng, Y., Wu, F., Yang, Y., Peñuelas, J., 2021. Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob. Chang. Biol. 27, 3350–3357. https://doi.org/10.1111/gcb.15644
Zabret, K., Rakovec, J., Šraj, M., 2018. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area. J. Hydrol. 558, 29–41. https://doi.org/10.1016/j.jhydrol.2018.01.025
Zhang, H., Wu, H., Li, J., He, B., Liu, J., Wang, N., Duan, W., Liao, A., 2019. Spatial-temporal variability of throughfall in a subtropical deciduous forest from the hilly regions of eastern China. J. Mt. Sci. 16, 1788–1801. https://doi.org/10.1007/s11629-019-5424-9

Publicado

2023-08-10

Cómo citar

BRITO, Gleicon Queiroz de; MURTA, Johnny Rodrigues de Melo; SALEMI, Luiz Felippe. Partição de Chuva e Nível Freático em uma Floresta Ripária Tropical nos Domínios da Savana Brasileira. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 12, n. 2, p. 221–235, 2023. DOI: 10.21664/2238-8869.2023v12i2.p221-235. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/6472. Acesso em: 21 ene. 2025.