Effect Of Chitosan on the Growth Performance of Red Tilapia (Oreochromis mossambicus × Oreochromis niloticus) and Lettuce (Lactuca sativa L.) in Aquaponic System

Authors

DOI:

https://doi.org/10.21664/2238-8869.2025v14i4.8279

Keywords:

aquaculture, food efficiency, recirculating system, growth, survival

Abstract

Aquaponics is a sustainable alternative that integrates the symbiotic cultivation of aquatic organisms and plants, whose performance can be enhanced through natural biostimulants such as chitosan. This study evaluated the bioproductive response of hybrid tilapia (Oreochromis mossambicus × O. niloticus) and three varieties of lettuce (Lactuca sativa L.) in a nutrient film technique (NFT)-type aquaponic system under different concentrations of chitosan. In lettuce cultivation, a full factorial 3×3 design (chitosan dose × lettuce variety) was implemented, with three treatments (A1: 0 ppm, A2: 500 ppm, A3: 1000 ppm) and three lettuce varieties (B1: Grandes Lagos, B2: Regina 500, B3: Red Rock), with three replicates per combination. For the fish, a unifactorial design was applied using the same chitosan concentrations. Growth performance variables in tilapia (final weight, length, specific growth rate, feed conversion ratio, and protein efficiency ratio) and agronomic parameters in lettuce (fresh weight, number of leaves, and height) were evaluated. Results indicated that the 1000 ppm chitosan treatment (A3) significantly improved (P < 0.05) fish performance, reaching an SGR of 2.56, FCR of 1.05, and PER of 2.12. In lettuce, the A2B2 and A3B1 interactions yielded the best agronomic performance (P < 0.05). Principal component analysis and Pearson correlation revealed positive associations between chitosan application and the productivity of both species. In conclusion, chitosan enhanced the integrated growth of tilapia and lettuce in the aquaponic system, representing a functional alternative for system optimization.

References

Abd El-Naby, F.S., M.A. Naiel, A.A. Al-Sagheer, and S.S. Negm, 2019. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture 501: 82–89. https://doi.org/10.1016/j.aquaculture.2018.11.014

Abdel-Tawwab, M., N. Razek, and A. Abdel-Rahman, 2019. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish and Shellfish Immunology 88: 254–258. https://doi.org/10.1016/j.fsi.2019.02.063

Abu-Elala, N.M., N. Hossam-Elden, M.S. Marzouk, and M.F. El Basuini, 2025. Chitosan for aquaculture: growth promotion, immune modulation, antimicrobial activity, bio-carrier utility, water quality management, and safety considerations – A review. Annals of Animal Science 25(2): 483–509. https://doi.org/10.2478/aoas-2024-0079

Ani, J., J. Manyala, F. Masese, and K. Fitzsimmons, 2022. Effect of stocking density on growth performance of monosex Nile tilapia (Oreochromis niloticus) in the aquaponic system integrated with lettuce (Lactuca sativa). Aquaculture and Fisheries 7(3): 328–335. https://doi.org/10.1016/j.aaf.2021.03.002

Atique, F., P. Lindholm-Lehto, and J. Pirhonen, 2022. Is aquaponics beneficial in terms of fish and plant growth and water quality in comparison to separate recirculating aquaculture and hydroponic systems?. Water 14(9): 1447. https://doi.org/10.3390/w14091447

Badawy, M.E.I., and E.I. Rabea, 2011. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry 2011: 1–29. https://doi.org/10.1155/2011/460381

Chen, Y., X. Zhu, Y. Yang, D. Han, J. Jin, and S. Xie, 2014. Effect of dietary chitosan on growth performance, haematology, immune response, intestine morphology, intestine microbiota and disease resistance in gibel carp (Carassius auratus gibelio). Aquaculture Nutrition 20(5): 532–546. https://doi.org/10.1111/anu.12106

Delgado, G.N., 2020. Aprovechamiento de efluentes provenientes de los sistemas de recirculación acuícola del cultivo de tilapia (Oreochromis sp.) en acuaponía [Tesis de Maestría, Universidad Nacional Agraria La Molina]. Repositorio Institucional UNALM.

Endut, A., A. Jusoh, N. Ali, W.B. Wan Nik, and A. Hassan, 2011. A study on the optimal hydraulic loading rate and plant ratio in recirculating aquaponic system. Bioresource Technology 101(4): 1511–1517. https://doi.org/10.1016/j.biortech.2009.09.040

FAO, 2025. FishStatJ – Global Aquaculture Production Dataset (Updated March 2025). Food and Agriculture Organization of the United Nations. https://www.fao.org/fishery/en/statistics/software/fishstatj

Graber, A., and R. Junge, 2009. Aquaponic systems: nutrient recycling from fish wastewater by vegetable production. Desalination 246(1–3): 147–156. https://doi.org/10.1016/j.desal.2008.03.048

Hossam-Elden, N., N. Abu-Elala, S.E. Ali, M.S. Khattab, and M.S. Marzouk, 2024. Dietary immune nutritive effect of chitosan/chitosan nanoparticles on the Nile tilapia: short-term exposure. Egyptian Journal of Aquatic Biology and Fisheries 28(1): 157. https://doi.org/10.21608/ejabf.2024.336935

İkiz, B., H.Y. Dasgan, S. Balik, S. Kusvuran, and N.S. Gruda, 2024. The use of biostimulants as a key to sustainable hydroponic lettuce farming under saline water stress. BMC Plant Biology 24(1): 808. https://doi.org/10.1186/s12870-024-05520-8

Keong, W.C., and N. Romano, 2013. A review of the nutrition and feeding management of farmed tilapia throughout the culture cycle. Reviews in Aquaculture 1(1): 1–23. https://doi.org/10.1111/raq.12014

Khater, E.S., A. Bahnasawy, H. Mosa, W. Abbas, and O. Morsy, 2024. Nutrient supply systems and their effect on the performance of the Nile tilapia (Oreochromis niloticus) and lettuce (Lactuca sativa) plant integration system. Scientific Reports 14(1): 4229. https://doi.org/10.1038/s41598-024-54656-y

Lembang, M., and W. Widiawati, 2022. Determination of the best concentration of chitosan as a recirculation filter for growth and survival of tilapia (Oreochromis niloticus). Journal of Aquaculture and Fish Health 11(3): 359–366. https://doi.org/10.20473/jafh.v11i3.34929

Lim, C., E. Li, and P. Klesius, 2011. Distiller’s dried grains with solubles as an alternative protein source in diets of tilapia. Reviews in Aquaculture 3(1): 1–10. https://doi.org/10.1111/j.1753-5131.2011.01054.x

Lyalina, T., B. Shagdarova, Y. Zhuikova, A. Il’ina, A. Lunkov, and V. Varlamov, 2023. Effect of seed priming with chitosan hydrolysate on lettuce (Lactuca sativa) growth parameters. Molecules 28(4): 1915. https://doi.org/10.3390/molecules28041915

Méndez-Martínez, Y., A.R.Vera-Veliz, E. Cortés-Jacinto, Y. Cruz-Quintana, A. Botello-Leon, P.D. Mendoza-Carranza, N.S. Calvo. 2023. Growth Performance, Feed Utilisation, Digestive and Metabolic Enzyme Activity, and Liver Morphohistology in Hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus) Juveniles Fed with the Inclusion of Chitosan in Their Diet. Fishes 8: 546. https://doi.org/10.3390/fishes8110546

Oushani, A.K., M. Soltani, N. Sheikhzadeh, M.S. Mehrgan, and H.R. Islami, 2020. Effects of dietary chitosan and nano-chitosan loaded clinoptilolite on growth and immune responses of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology 98: 210–217. https://doi.org/10.1016/j.fsi.2020.01.016

Ovalı, G., and H.Ö. Ünlü, 2024. Effects of chitosan application on the yield and quality of lettuce. BioResources 19(1): 985. https://doi.org/10.15376/biores.19.1.hubbe

Pinho, S., L. David, F. Garcia, K. Keesman, M.C. Portella, and S. Goddek, 2021. South American fish species suitable for aquaponics: a review. Aquaculture International 29(4): 1427–1449. https://doi.org/10.1007/s10499-021-00674-w

Rakocy, J.E., 2012. Aquaponics – integrating fish and plant culture. Aquaculture Production Systems 344–386. https://doi.org/10.1002/9781118250105

Ramírez-Rodríguez, S., P. Preciado-Rangel, M. Cabrera-De, S. González-Morales, and H. Ortega-Ortiz, 2024. Chitosan nanoparticles as biostimulant in lettuce. Phyton, International Journal of Experimental Botany 93(4): 777. https://doi.org/10.32604/phyton.2024.048096

Saufie, S., A. Estim, S. Raehanah, M. Shaleh, and S. Mustafa, 2022. Effect of biofertilizers on the integrated culture of genetically improved farmed tilapia and green beans in aquaponics. Aquaculture Studies 22(3): 729. https://doi.org/10.4194/AQUASI729

Shi, F., X. Qiu, L. Nie, L. Hu, S. Babu, Q. Lin, Y. Zhang, L. Chen, J. Li, L. Lin, and Z. Qin, 2020. Effects of oligochitosan on the growth, immune responses and gut microbes of tilapia (Oreochromis niloticus). Fish and Shellfish Immunology 106: 563–573. https://doi.org/10.1016/j.fsi.2020.07.049

Tetreault, J., R. Fogle, and T. Guerdat, 2023. Scalable coupled aquaponics design: lettuce and tilapia production using a parallel unit process approach. Frontiers in Sustainable Food Systems 7: 1059066. https://doi.org/10.3389/fsufs.2023.1059066

Veintimilla-Morán, G., 2023. Estudio de factibilidad para la producción y comercialización de tilapias rojas (Oreochromis sp.) en el cantón Quevedo. Multidisciplinary Latin American Journal 1(1): 14–34. https://mlaj-revista.org/index.php/journal/article/view/3/4

Waller, U., A.K. Buhmann, A. Ernst, V. Hanke, A. Kulakowski, B. Wecker, J. Orellana, and J. Papenbrock, 2015. Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture International 23(6): 1473–1489. https://doi.org/10.1007/s10499-015-9898-3

Xu, C., and B. Mou, 2018. Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology 28(4): 476–480. https://doi.org/10.21273/HORTTECH04032-18

Downloads

Published

2025-12-19

How to Cite

MÉNDEZ-MARTÍNEZ, Yuniel; ZURITA-ALBÁN, Alba D.; ZAMBRANO-OSTAIZA, Agustín N.; PÉREZ, Juan Jose Reyes; ANTUNES, Luiz Fernando de Sousa. Effect Of Chitosan on the Growth Performance of Red Tilapia (Oreochromis mossambicus × Oreochromis niloticus) and Lettuce (Lactuca sativa L.) in Aquaponic System. Fronteiras - Journal of Social, Technological and Environmental Science, [S. l.], v. 14, n. 4, p. 154–169, 2025. DOI: 10.21664/2238-8869.2025v14i4.8279. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/8279. Acesso em: 23 dec. 2025.