Monitoring Restored Mangroves in Porto do Mangue, Brazil: Assessing RGB Vegetation Indices and DEM from Drone Imagery

Authors

DOI:

https://doi.org/10.21664/2238-8869.2025v14i3.8228

Keywords:

remote sensing, coastal ecosystems, land use and land cover classification, geospatial technology, environmental planning

Abstract

This study evaluated the use of RGB images obtained by Remotely Piloted Aircraft (RPA) for monitoring mangroves undergoing environmental recovery, located in Porto do Mangue-RN, Brazil. Six spectral indices (VARI, GLI, MGVRI, MPRI, RGVBI, and ExG) were applied with the aim of classifying the areas into three thematic classes: exposed soil, low vegetation, and shrub vegetation. The image processing allowed the generation of orthophotos and Digital Elevation Models (DEM), which provided support for validating the obtained results. The spectral indices were individually tested using QGIS software and analyzed in comparison with field data and the DEM. The Excess Green Index (ExG) showed the highest accuracy and consistency in identifying the classes, with emphasis on shrub vegetation, achieving values very close to the reference area. The other indices showed limitations, especially in scenarios with high spectral variability and the presence of shadows and wet soil. The use of high-resolution RGB imagery associated with simple spectral indices proved to be an accessible and efficient tool for monitoring mangrove areas under regeneration, with potential to support environmental recovery actions, reforestation, and public preservation policies. The adopted methodology provides support for environmental management in contexts of limited resources and reinforces the role of RPAs in monitoring sensitive ecosystems.

References

Bendig, Juliane, Kang Yu, Helge Aasen, et al. 2015. “Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley”. International Journal of Applied Earth Observation and Geoinformation 39: 79–87. https://doi.org/10.1016/j.jag.2015.02.012.

Costa, Karina Freitas, Etenaldo Felipe Santiago, e Vinicius de Oliveira Ribeiro. 2022. “Uso de imagens na avaliação ambiental e restauração em ambientes naturais”. Sociedade, Tecnologia e Meio Ambiente: avanços, retrocessos e novas perspectivas 3. https://dx.doi.org/10.37885/220408649.

DRONE HARMONY AG. 2025. Automated Drone Inspections Increase Quality & Safety – Reduce Costs. https://www.droneharmony.com/.

Duarte, Thiago Lima Santana, e Viviane Almeida Rezende. 2019. “Degradação dos manguezais em Aracaju/SE(Brasil): impactos socioeconômicos na atividade de catador do caranguejo-uçá (Ucides cordatus)”. Revista Brasileira de Meio Ambiente 7 (1).

Florêncio, José Vinícius de Sousa, Maria do Socorro Bezerra de Araújo, Josiclêda Domiciano Galvíncio, e Rodrigo de Miranda Queiroga. 2024. “Estimativa de altura de vegetação com imagens obtidas de drone utilizando técnicas de inteligência artificial”. Revista Brasileira de Geografia Física 17 (5): 3736–49.

Gitelson, A. A., Y. J. Kaufman, e D. Rundquist. 2002. “Novel Algorithms for Remote Estimation of Vegetation Fraction”. Remote Sensing of Environment 80 (1): 76–87.

Gomes, Maria Tereza Uille, Phamella Lorenzen, e Clarissa Bueno Wandscheer. 2024. “Carbono azul: Manglares, un potencial sumidero de carbono para América Latina y el Caribe”. Revista Estudios Avanzados, no 40: 149–82. https://doi.org/10.35588/drc5zx11.

Klemas, V. 2013. “Remote sensing of emergent and submerged wetlands: an overview”. TAYLOR & FRANCIS 34 (18): 6286–320. https://doi.org/dx.doi.org/10.1080/01431161.2013.800656.

Louhaichi, M, M. M. Borman, e D. E. Johnson. 2001. “Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat”. Geocarto International 16 (1): 65–70.

Lussem, U, A Bolten, e M. L Gnyp. 2018. “Evaluation of rgb-based vegetation indices from uav imagery to estimate forage yield in grassland”. Symposium “Developments, Technologies and Applications in Remote Sensing", advance online publication. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018.

Phinn, Stuart, Chris Roelfsema, Arnold Dekker, Vittoro Brando, e Janet Anstee. 2008. “Mapping seagrass species, cover and biomass in shallow waters: An assessment of satellite multi-spectral and airborne hyper-spectral imaging systems in Moreton Bay (Australia)”. Remote Sensing of Environment 112: 3413–25. https://doi.org/10.1016/j.rse.2007.09.017.

QGIS. 2025. Quantum GIS - A liderança do SIG de código aberto. https://qgis.org/.

Santos, Isabela Rodrigues, Norma Ely Santos Beltrão, e Ariadne Reinaldo Trindade. 2019. “CARBONO ‘AZUL’ NOS MANGUEZAIS AMAZÔNICOS: CONSERVAÇÃO E VALORAÇÃO ECONÔMICA”. Revista Iberoamericana de Economía Ecológica 31 (1): 18–28. https://www.raco.cat/index.php/Revibec/article/download/361040/455862/.

Santos, Nayara Marques, Diógenes Félix da Silva Costa, e Luiz Antonio Cestaro. 2021. “Identificação e mapeamento dos serviços ecossistêmicos de provisão no manguezal do Rio Tijupá, Ilha do Maranhão (Região Nordeste do Brasil)”. Revista Caminhos de Geografia 22 (29): 276–94. https://www.researchgate.net/profile/Nayara-Santos-7/publication/349699546_identificacao_e_mapeamento_dos_servicos_ecossistemicos_de_provisao_no_manguezal_do_rio_tijupa_ilha_do_maranhao_regiao_nordeste_do_brasil/links/6053c95592851cd8ce4f8bd3/identificacao-e-mapeamento-dos-servicos-ecossistemicos-de-provisao-no-manguezal-do-rio-tijupa-ilha-do-maranhao-regiao-nordeste-do-brasil.pdf.

Silva, Cesar, Alan D’Oliveira Correa, e Matheus Kopp Prandini. 2024. Environmental quality monitoring of restingas in the coast of southern Brazil using high resolution images: a tool for environmental management. 29. https://doi.org/10.1590/S1413-415220240002.

Souza, Alane Santos, Rafael dos Santos Gonçalves, Everton Luís Poelking, Raffael de Almeida, e Sangermano. 2023. “Mapeamento dos manguezais na Baía de Todos os Santos”. Anais do XX simpósio Brasileiro de Sensoriamento Remoto (Florianópolis-SC), 2359–62. http://marte2.sid.inpe.br/col/sid.inpe.br/marte2/2023/05.16.13.45/doc/156174.pdf.

Vikou, Sidney Vincent de Paul, Otacílio Lopes de Souza da Paz, Daiane Maria Pilatti, e Eduardo Vedor de Paula. 2023. “Análise da Pressão Antrópica sobre Manguezais Urbanos: Subsídios à Proteção Ambiental e ao Ordenamento Territorial”. Sociedade & Natureza 35. https://doi.org/10.14393/SN-v35-2023-67515.

Woebbecke, D. M, G. E Meyer, k Von Bargen, e D. A Mortensen. 1995. “Color indices for weed identification under various soil, residue, and lighting conditions”. Transactions of the ASAE, 259–69.

Yang, Zhengwei, Patrick Willis, e Rick Mueller. 2008. “Impact of band-ratio enhanced awifs image to crop classification accuracy”. National Agricultural Statistics Service Research and Development Division, 1-20.

Published

2025-09-04

How to Cite

ALMEIDA, Leonardo de França; GOMES, Erivaldo Laurindo; OLIVEIRA, Renata Ramayane Torquato; NETO, Miguel Ferreira; FERNANDES, Rogerio Taygra Vasconcelos; FERNANDES, Raimunda Thyciana Vasconcelos; SOUTO, Antônio Gustavo de Luna; ANTUNES, Luiz Fernando de Sousa. Monitoring Restored Mangroves in Porto do Mangue, Brazil: Assessing RGB Vegetation Indices and DEM from Drone Imagery. Fronteiras - Journal of Social, Technological and Environmental Science, [S. l.], v. 14, n. 3, p. 349–355, 2025. DOI: 10.21664/2238-8869.2025v14i3.8228. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/8228. Acesso em: 7 sep. 2025.