The Toxological Profile of the Agrotoxic Acid 2,4 Dichlophenoxyacetic in Fleischmann® Yeast

Authors

DOI:

https://doi.org/10.21664/2238-8869.2022v11i2.p141-149

Keywords:

Saccharomyces cerevisiae, comet assay, bioindicator, toxicity, genotoxicity

Abstract

Pesticides are chemical substances used to ensure crop productivity. However, they can cause numerous consequences for the environment. As the 2,4-D, which even when applied with control can cause great environmental changes, because when dispersed in the environment, it reaches the different compartments of the ecosystem. Organisms absorb these substances and with bioaccumulation, deleterious effects occur that are difficult to detect, requiring test organisms that offer rapid responses. Thus, this study aims to evaluate the cytotoxicity and genotoxicity effect of the 2,4 D pesticide on the yeast Fleischmann® and verify its application as a possible bioindicator organism. Cytotoxicity assays were performed through cell growth, using 2,4-D at concentrations (2.0, 4.0 and 6.0 µg L-1) in which the yeast FLE was incubated and at times (30, 60 and 90 min) 5µL aliquots were dropped into 96-well plates and incubated at 30°C for 72 hours. Genotoxicity was evaluated by the comet assay method and the results were presented according to the levels of DNA damage. The toxic action of the 2,4-D compound was verified at all concentrations analyzed, and within 90 min there was a greater inhibition of cell growth. The comet assay showed a greater amount of DNA damage in the yeast FLE at the concentration of 6 µg L-1. Yeast FLE showed potential to be used as a bioindicator of chemical compounds in environmental analysis.

Author Biographies

Debora Sarabia Tavares, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brasil.

Mestra em Recursos Naturais pelo Programa de Pós-Graduação em Recursos Naturais – PGRN da Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brasil.

Larissa Pires Mueller, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brasil

Mestra em Recursos Naturais pelo Programa de Pós-Graduação em Recursos Naturais – PGRN da Universidade Estadual de Mato Grosso do Sul, Dourados/MS, Brasil.

Doutorado (em andamento) no Programa de Pós-Graduação em Ciências da Saúde na Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brasil;

Maria do Socorro Mascarenhas Santos, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brasil.

Mestre em Recursos Naturais pelo Programa de Pós-Graduação em Recursos Naturais PGRN da Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Dourados, Mato Grosso do Sul, Brasil;

Doutorado (em andamento) no Programa de Pós-Graduação em Recursos Naturais PGRN da Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Dourados, Mato Grosso do Sul, Brasil

Margareth Batistote, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brasil.

Doutorado em Biotecnologia pela Universidade Estadual Paulista Júlio de Mesquita Filho/UNESP- Instituto de Química - Câmpus de Araraquara, São Paulo, Brasil;

Professora/Pesquisadora Sênior do Programa de Pós-Graduação em Recursos Naturais PGRN da Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Dourados, Mato Grosso do Sul, Brasil

References

Botstein D, Fink GR 2011. Yeast: An Experimental Organism for 21st Century Biology. Genetics 189:695–704.
Braconi D, Bernardini G, Santucci A 2016. Saccharomyces cerevisiae as a Model in Ecotoxicological Studies: A Post-genomics Perspective. Journal of Proteomics 137: 19-34.
Claus S, Jezierska S, Van Bogaert IN 2019. Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS letters 593(13), 1508-1527.
Da Silva J 2007. O uso do Ensaio Cometa para o Ensino de Genética Toxicológica. Genética na Escola 2:30-37.
De Souza RM, Seibert D, Quesada HB, de Jesus Bassetti F, Fagundes-Klen MR, Bergamasco R 2020. Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Safety and Environmental Protection 135, 22-37.
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C 2016. TOR Signaling and Nutrient Sensing. Annual Review of Plant Biology 67:261-285.
Dos Santos SC, Sá-Correia I 2015. Yeast Toxicogenomics: Lessons from a Eukaryotic Cell Model and Cell Factory. Current Opinion in Biotechnology 33:183-191.
Dragone R, Cheng R, Grasso G, Frazzoli C 2015. Diuron in Water: Functional Toxicity and Intracellular Detoxification Patterns of Active Concentrations Assayed in Tandem by a Yeast-based Probe. International Journal of Environmental Research and Public Health 12:3731-3740.
Estève K, Poupot C, Dabert P, Mietton-Peuchot M, Milisic V 2009. A Saccharomyces cerevisiae-based Bioassay for Assessing Pesticide Toxicity. Journal of Industrial Microbiology & Biotechnology 36:1529-1534.
Fernandes FH, Bustos-Obregon E, Salvadori DMF 2015. Disperse Red 1 (textile dye) Induces Cytotoxic and Genotoxic Effects in Mouse Germ Cells. Reproductive Toxicology 53:75-81.
Ghanizadeh H, Harrington KC 2017. Non-target site mechanisms of resistance to herbicides. Critical Reviews in Plant Sciences 36(1):24-34.
Gil FN, Becker JD, Viegas CA 2014. Potential Mechanisms Underlying Response to Effects of the Fungicide Pyrimethanil from Gene Expression Profiling in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 62:5237-5247.
Gil FN, Moreira-Santos M, Chelinho S, Pereira C, Feliciano JR, Leitão JH, Sousa JP, Ribeiro R, Viegas CA 2015. Suitability of a Saccharomyces cerevisiae-based Assay to Assess the Toxicity of Pyrimethanil Sprayed Soils via Surface Runoff: Comparison with Standard Aquatic and Soil Toxicity Assays. Science of the Total Environment, 505:161-171.
Grasso G, Caracciolo L, Cocco G, Frazzoli C, Dragone R 2018. Towards Simazine Monitoring in Agro-Zootechnical Productions: A Yeast Cell Bioprobe for Real Samples Screening. Biosensors 8:112.
Jayaraj R, Megha P, Sreedev P 2016. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary toxicology, 9(3-4):90.
Lah B, Gorjanc G, Nekrep FV, Marinsek-Logar R 2004. Comet Assay Assessment of Wastewater Genotoxicity using Yeast Cells. Bulletin of Environmental Contamination and Toxicology 72:607- 616.
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts I N, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'kelly MJt, Oudenaarden A, Barton DBh, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S 2009. Population Genomics of Domestic and Wild Yeasts. Nature 458:337-341.
Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB 2018. Pesticide toxicity: a mechanistic approach. EXCLI journal, 17:1101.
Mira NP, Becker JD, Sá-Correia I 2010. Genomic Expression Program involving the Haa1p-regulon in Saccharomyces cerevisiae Response to Acetic Acid. Omics: A Journal of Integrative Biology 14:587-601.
Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S 2021. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Frontiers in Bioengineering and Biotechnology 9:31.
Moreno-García J, García-Martinez T, Moreno J, Mauricio JC, Ogawa M, Luong P, Bisson LF 2018. Impact of Yeast Flocculation and Biofilm Formation on Yeast-Fungus Coadhesion in a Novel Immobilization System. American Journal of Enology and Viticulture 69:278-288.
North M, Vulpe CD 2010. Functional Toxicogenomics: Mechanism-centered Toxicology. International Journal of Molecular Sciences 11: 4796-4813.
Nsibande SA, Forbes PBC 2016. Fluorescence detection of pesticides using quantum dot materials–a review. Analytica Chimica Acta, 945:9-22.
O'connor STF, Lan J, North M, Loguinov A, Zhang L, Smith MT, Gu AZ, Vulpe C 2013. Genome-wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo [a] Pyrene in Saccharomyces cerevisiae. Frontiers in Genetics 3:01-20.
Pileggi M, Pileggi SA, Sadowsky MJ 2020. Herbicide bioremediation: from strains to bacterial communities. Heliyon, 6(12): e05767.
Rumlova L, Dolezalova J 2012. A New Biological Test Utilising the Yeast Saccharomyces cerevisiae for the Rapid Detection of Toxic Substances in Water. Environmental Toxicology and Pharmacology 33:459-464.
Sarabia DT, Mueller LP, Mascarenhas Santos MS, Batistote M, Júnior RPS 2019. O panorama da utilização de agrotóxicos no Brasil. Educação Ambiental em Ação 68:01-12.
Simões T, Teixeira MC, Fernandes AR, Sá-Correia I 2003. Adaptation of Saccharomyces cerevisiae to the Herbicide 2, 4-dichlorophenoxyacetic acid, mediated by Msn2p-and Msn4p-regulated Genes: Important Role of SPI1. Applied and Environmental Microbiology 69:4019-4028.
Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J 2020. Herbicide glyphosate: toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17(20):7519.
Sisinno CLS, Oliveira-Filho EC 2013. Princípios de Toxicologia Ambiental: Conceitos e Aplicações. Editora Interciência Ltda, p. 216.
Smith AM, Ammar R, Nislow C, Giaever G 2010. A Survey of Yeast Genomic Assays for Drug and Target Discovery. Pharmacology & Therapeutics 127:156-164.
Takano HK, Patterson EL, Nissen SJ, Dayan FE, Gaines TA 2019. Predicting herbicide movement across semi-permeable membranes using three phase partitioning. Pesticide biochemistry and physiology 159:22-26.
Teixeira MC, Duque P, Sa-Correia I 2007. Environmental genomics: mechanistic insights into toxicity of and resistance to the herbicide 2, 4-D. TRENDS in Biotechnology, 25(8):363-370.
Westlund P, Yargeau V 2017. Investigation of the Presence and Endocrine Activities of Pesticides found in Wastewater Effluent using Yeast-based Bioassays. Science of the Total Environment 607:744-751.

Downloads

Published

2022-08-02

How to Cite

TAVARES, Debora Sarabia; MUELLER, Larissa Pires; SANTOS, Maria do Socorro Mascarenhas; BATISTOTE, Margareth. The Toxological Profile of the Agrotoxic Acid 2,4 Dichlophenoxyacetic in Fleischmann® Yeast. Fronteiras - Journal of Social, Technological and Environmental Science, [S. l.], v. 11, n. 2, p. 141–149, 2022. DOI: 10.21664/2238-8869.2022v11i2.p141-149. Disponível em: https://revistas.unievangelica.edu.br/index.php/fronteiras/article/view/5970. Acesso em: 4 jan. 2025.