A Bibliometric Mapping of Artificial Intelligence Applications in Climate Change Research
DOI:
https://doi.org/10.21664/2238-8869.2025v14i3.7927Palavras-chave:
inteligência artificial, mudanças climáticas, análise bibliométrica, ciência ambiental, aprendizado de máquinaResumo
A inteligência artificial (IA) no estudo das mudanças climáticas representa um grande avanço na compreensão, previsão e enfrentamento de problemas ambientais no mundo da pesquisa moderna. Este estudo bibliométrico examina a evolução e o panorama das aplicações da inteligência artificial (IA) na pesquisa sobre mudanças climáticas no período de 1996 a 2024. A análise atual abrange 399 publicações baseadas em duas bases de dados líderes, Web of Science (WoS) e Scopus. O ScientoPy é utilizado para avaliar e analisar os padrões de publicação, enquanto o VOSviewer gera visualizações de rede. Os resultados deste estudo demonstraram um crescimento substancial das pesquisas anteriores, com a WoS apresentando uma alta taxa de crescimento anual de 20,5% e a Scopus exibindo uma atividade recente significativa, com 61,7% das publicações nos últimos anos. As principais descobertas também indicaram que Sustainability foi o principal periódico publicador, a Academia Chinesa de Ciências foi a principal instituição contribuidora, e Ciências Ambientais & Ecologia foi a área temática predominante. Esta análise também identificou três principais clusters de palavras-chave: metodologias de IA, conceitos da ciência do clima e domínios de aplicação. Este estudo apresenta um exame bibliométrico abrangente sobre as implementações da inteligência artificial nas pesquisas sobre mudanças climáticas, beneficiando diversos stakeholders. Apesar das limitações de focar em publicações anglófonas (periódicos em inglês), os resultados oferecem perspectivas significativas sobre a evolução do campo, seus principais contribuintes e trajetórias futuras. Os resultados são relevantes para pesquisadores, profissionais e formuladores de políticas interessados em aproveitar as tecnologias de IA para pesquisas sobre mudanças climáticas e análises ambientais.
Referências
Abdullah KH 2022. Publication trends in biology education: A bibliometric review of 63 years. Journal of Turkish Science Education 19(2): 465–480. https://doi.org/10.36681/tused.2022.131
Abdullah KH, Sofyan D 2023. Machine learning in safety and health research: A scientometric analysis. International Journal of Information Science and Management 21(1): 17–37. https://doi.org/10.22034/ijism.2022.1977763.0
Al-Balushi HA, Singh H, Saleem I 2025. Unlocking sustainable performance in the health-care sector: the dynamic nexus of artificial intelligence, green innovation and green knowledge sharing. Society and Business Review. Ahead-of-print. https://doi.org/10.1108/SBR-07-2024-0249
Aria M, Cuccurullo C 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics 11(4): 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Ashok P, Biswas, KK, Shreenidhi KS, Anandaram H, Karthikeyan G, Ravindaran F 2025. Harnessing AI for climate resilience: Opportunities and challenges in combating climate change. In R Bansal, F Rabby, R Sharma, D Parwani, A Gupta (eds.). Text Mining and Sentiment Analysis in Climate Change and Environmental Sustainability, p. 141–170. IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7230-2.ch008
Balakrishnan TS, Krishnan P, Ebenezar US, Nizarudeen MM, Kamal N 2024. Machine learning for climate change impact assessment and adaptation planning. 2024 International Conference on Trends in Quantum Computing and Emerging Business Technologies, p. 1–6. IEEE. https://doi.org/10.1109/TQCEBT59414.2024.10545291
Barre MA, Elmi AH, Mohamud IH, Warsame, ZA, Mohamed AA 2024. AI in the Era of Climate Change: Unveiling Patterns and Trends Through Bibliometric Analysis. International Journal of Sustainable Development & Planning 19(11): 4219-4225. https://doi.org/10.18280/ijsdp.191111
Bracarense N, Bawack RE, Fosso Wamba S, Carillo KDA 2022. Artificial intelligence and sustainability: A bibliometric analysis and future research directions. Pacific Asia Journal of the Association for Information Systems 14(2): 136-159. https://doi.org/10.17705/1pais.14209
Chaiechi T 2020. Sustainable tropical cities: A scoping review of multidisciplinary methods for urban planning. eTropic Electronic Journal of Studies in the Tropics 19(2): 25–51. https://doi.org/10.25120/etropic.19.2.2020.3743
Chang J, Wang G, Mao T 2015. Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology 529: 1211-1220. https://doi.org/10.1016/j.jhydrol.2015.09.038
Chen L, Han B, Wang X, Zhao J, Yang W, Yang Z 2023. Machine Learning methods in weather and climate applications: A survey. Applied Sciences 13(21): 12019. https://doi.org/10.3390/app132112019
Chin S, Lloyd V 2024. Predicting climate change using an autoregressive long short-term memory model. Frontiers in Environmental Science, 12:1-8. https://doi.org/10.3389/fenvs.2024.1301343
Cowls, J., Tsamados, A., Taddeo, M., & Floridi, L. (2023). The AI gambit: Leveraging artificial intelligence to combat climate change-opportunities, challenges, and recommendations. AI & Society, 38(1), 283–307. https://doi.org/10.1007/s00146-021-01294-x
Crane-Droesch A 2018. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environmental Research Letters 13(11): 114003. https://doi.org/10.1088/1748-9326/aae159
Hafiar H, Budiana HR, Abdullah KH, Sofyan D, Amin K 2024. Scoring big: A bibliometric analysis of the intersection between sports and public relations. Cogent Social Sciences 10(1): 1-18. https://doi.org/10.1080/23311886.2023.2297706
Hamdan A, Ibekwe KI, Etukudoh EA, Umoh AA, Ilojianya VI 2024. AI and machine learning in climate change research: A review of predictive models and environmental impact. World Journal of Advanced Research and Reviews 21(1): 1999-2008. https://doi.org/10.30574/wjarr.2024.21.1.0257
Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H 2019. Machine learning and artificial intelligence to aid climate change research and preparedness. Environmental Research Letters 14(12): 124007. https://doi.org/10.1088/1748-9326/ab4e55
Kaack LH, Donti PL, Strubell E, Kamiya G, Creutzig F, Rolnick D 2022. Aligning artificial intelligence with climate change mitigation. Nature Climate Change 12(6): 518-527. https://doi.org/10.1038/s41558-022-01377-7
Kim S, Ramea K, Cachay SR, Hirasawa H, Hazarika S, Hingmire D, Mitra P, Rasch PJ, Singh H 2023. Climate intervention analysis using AI model guided by statistical physics principles. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, p. 4653–4659. ACM. https://doi.org/10.1145/3583780.3615460
Knutti R, Stocker TF, Joos F, Plattner GK 2003. Probabilistic climate change projections using neural networks. Climate Dynamics 21: 257-272. https://doi.org/10.1007/s00382-003-0345-1
Kumar R, Goel R, Sidana N, Sharma AP, Ghai S, Singh T, Singh R, Priyadarshi N, Twala B, Ahmad V 2024. Enhancing climate forecasting with AI: Current state and future prospect. F1000Research 13: 1-24. https://doi.org/10.12688/f1000research.154498.1
Larson C 2018. China’s AI imperative. Science 359(6376): 628–630. https://doi.org/10.1126/science.359.6376.628
Maideen AK, Basha SMN, Basha VA 2024. Effective utilisation of AI to improve global warming mitigation strategies through predictive climate modelling. International Journal of Data Informatics and Intelligent Computing 3(3): 43-52. https://doi.org/10.59461/ijdiic.v3i3.129
Makkeasorn A, Chang NB, Zhou X 2008. Short-term streamflow forecasting with global climate change implications–A comparative study between genetic programming and neural network models. Journal of Hydrology 352(3-4): 336-354. https://doi.org/10.1016/j.jhydrol.2008.01.023
Mansfield LA, Nowack PJ, Kasoar M, Everitt RG, Collins WJ, Voulgarakis A 2020. Predicting global patterns of long-term climate change from short-term simulations using machine learning. Npj Climate and Atmospheric Science 3(1): 1-9. https://doi.org/10.1038/s41612-020-00148-5
Materia S, García LP, van Straaten C, O S, Mamalakis A, Cavicchia L, Coumou D, de Luca P, Kretschmer M, Donat M 2024. Artificial intelligence for climate prediction of extremes: State of the art, challenges, and future perspectives. Wiley Interdisciplinary Reviews: Climate Change 15(6): e914. https://doi.org/10.1002/wcc.914
Miller T, Durlik I, Kostecka E, Kozlovska P, Łobodzińska A, Sokołowska S, Nowy A 2025. Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics 14(4): 696. https://doi.org/10.3390/electronics14040696
O'Gorman PA, Dwyer JG 2018. Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. Journal of Advances in Modeling Earth Systems 10(10): 2548-2563. https://doi.org/10.1029/2018MS001351
Parameshwari M, Gnanaguru G 2024. Artificial intelligence for climate sustainability: A comprehensive review of applications, challenges, and future prospects. 2024 4th International Conference on Sustainable Expert Systems (ICSES), p. 968–976. IEEE. https://doi.org/10.1109/ICSES63445.2024.10762990
Pimenow S, Pimenowa O, Prus, P 2024. Challenges of artificial intelligence development in the context of energy consumption and impact on climate change. Energies 17(23): 5965. https://doi.org/10.3390/en17235965
Poff NL, Tokar S, Johnson P 1996. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnology and Oceanography 41(5): 857-863. https://doi.org/10.4319/lo.1996.41.5.0857
Qiu K 2024. Navigating the green future: The transformative role of big data in climate change and environmental sustainability. Applied and Computational Engineering 57(1): 130-135. https://doi.org/10.54254/2755-2721/57/20241322
Rani HJ, Desai K, Sharma N 2024. Harnessing the power of machine learning to predict and mitigate the impacts of climate change on global ecosystems. 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), p. 1–6. IEEE. https://doi.org/10.1109/ACROSET62108.2024.10743981
Rolnick D, Donti PL, Kaack LH, Kochanski K, Lacoste A, Sankaran K, Ross AS, Milojevic-Dupont N, Jaques N, Waldman-Brown A, Luccioni AS, Maharaj T, Sherwin ED, Mukkavilli SK, Kording KP, Gomes CP, Ng AY, Hassabis D, Platt JC, Creutzig F, Chayes J, & Bengio Y 2023. Tackling climate change with machine learning. ACM Computing Surveys 55(2): 1-96. https://doi.org/10.1145/3485128
Ruiz-Rosero J, Ramirez-Gonzalez G, Viveros-Delgado J 2019. Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications. Scientometrics 121(2): 1165–1188. https://doi.org/10.1007/s11192-019-03213-w
Srivastava A, Maity R 2023. Assessing the potential of AI–ML in urban climate change adaptation and sustainable development. Sustainability 15(23): 16461. https://doi.org/10.3390/su152316461
Tang X, Heng J, Kaewunruen S, Dai K, Baniotopoulos C 2024. Artificial Intelligence-Powered Digital Twins for Sustainable and Resilient Engineering Structures/KI gestützte digitale Zwillinge für nachhaltige und widerstandsfähige technische Bauwerke. Bauingenieur 99(09): 270-276. https://doi.org/10.37544/0005-6650-2024-09-36
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Khairul Hafezad Abdullah, Zulkiffly Baharom

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Esta revista oferece acesso livre imediato ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização mundial do conhecimento.
A partir da publicação realizada na revista os autores possuem copyright e direitos de publicação de seus artigos sem restrições.
A Revista Fronteiras: Journal of Social, Technological and Environmental Science segue os preceitos legais da licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional.