O PAPEL DA INTERLEUCINA 10 NA INFECÇÃO PELO PAPILOMAVÍRUS HUMANO DE ALTO RISCO ASSOCIADO A CARCINOGÊNESE CERVICAL

Autores

  • Laíza Alves da Silva
  • Maryane Alves Gomes
  • Larisse Silva Dalla Libera

DOI:

https://doi.org/10.37951/refacer.v10i1.5946

Resumo

Introdução: A história natural do câncer cervical está associada a presença persistente da infecção pelo Papilomavírus humano (HPV) de alto risco. Vários fatores imunológicos, estão envolvidos nesse processo, entre eles a IL-10, uma citocina multifuncional que auxilia na progressão tumoral.Objetivo: Descrever o papel da IL-10 na infecção pelo HPV de alto risco em cânceres do colo do útero. Metodologia: Tratou-se de uma revisão integrativa da literatura, em que foram analisadas publicações indexadas na base MEDLINE, consultadas por meio do PubMed; Biblioteca Virtual de Saúde (BVS) e Scientific Eletronic Library Online (SciELO), e buscadores como Google acadêmico. Resultado e Discussão: Sete estudos foram incluídos na revisão, os quais mostraram que níveis mais altos de IL-10 estão presentes em microambientes tumorais com crescimento celular induzido pelo HPV. A prevalência geral do HPV foi de 85,7%. A principal metodologia de análise da IL-10 foi ELISA, e o tipo histológico tumoral mais encontrado foi o carcinoma de células escamosas (CEC). CONCLUSÃO: A IL-10 tem o papel de ajudar na promoção da carcinogênese induzida por HPV de alto risco em cânceres do colo do útero. Estudos que investiguem o papel da IL-10 associada ao HPV são escassos, mas necessários para traçar um caminho mais claro da atuação da IL-10 na resposta imunológica durante o processo carcinogênico.

Referências

ALCOCER-GONZÁLEZ, J. M. et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transfonned cervical cancer cells. Viral Immunology, v. 19, n. 3, p. 481–491, 2006. Disponível em: <https://doi.org/10.1089/vim.2006.19.481> Acesso em: 04
jun. 2020.


ALI, K. S., ALI, H. Y. M., JUBRAEL, J. M. S. Concentration levels of IL-10 and TNFα cytokines in patients with human papilloma virus (HPV) DNA+ and DNA- cervical lesions. Journal of Immunotoxicology, v. 9, n. 2, p. 168–172, 2012. Disponível em:
<https://doi.org/10.3109/1547691X.2011.642419> Acesso em: 10 set. 2020.


ALLAVENA, P. et al. Pathways connecting inflammation and cancer. Current Opinion in Genetics and Development, v. 18, n. 1, p. 3–10, 2008. Disponível em:
<https://www.sciencedirect.com/science/article/abs/pii/S0959437X08000075> Acesso em: 01 dez. 2020.


ALMEIDA, V. L. et al. Influence of interleukins on prognosis of patients with oral squamous cells carcinoma. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 55, n. 5, p.
550–558, 2019. Disponível em:<https://doi.org/10.5935/1676-2444.20190051> Acesso
em:13 out. 2020.


AMORIM CÂNDIDO, S. et al. Infecção por Papilomavírus Humano de alto risco Oncogênico em mulheres atendidas no Programa de Saúde da Família da Cidade de Serra Talhada, Pernambuco. Medicina Veterinária (UFRPE), v. 11, n. 4, p. 270, 2018. Disponível em:
<https://doi.org/10.26605/medvet-n4-1956> Acesso em: 13 out. 2020.


ARQ, A. et al. Tracking Precursor Lesions of Anal Squamous Cell. v. 24, n. 2, p. 168–172, 2011. Disponível em: < https://www.scielo.br/pdf/abcd/v24n2/en_a15v24n2.pdf > Acesso em: 20 out. 2020.


AZAR, K. K. et al. Increased secretion patterns of interleukin-10 and tumor necrosis factor- alpha in cervical squamous intraepithelial lesions. Human Pathology, v. 35, n. 11, p.
1376–1384, 2004. Disponível em: <https://doi.org/10.1016/j.humpath.2004.08.012> Acesso
em: 19 out. 2020.


BEN-EZRA, J. et al. Effect of fixation on the amplification of nucleic acids from paraffin embedded material by the polymerase chain reaction. Journal of Histochemistry and Cytochemistry, v. 39, n. 3, p. 351–354, 1991. Disponível em: <
https://doi.org/10.1177/39.3.1704393> Acesso em: 13 out. 2020.


BERMUDEZ-MORALES, V. H. et al. Correlation between IL-10 gene expression and HPV

infection in cervical cancer: a mechanism for immune response escape. Cancer Investigation, v. 26, n. 10, p. 1037–1043, 2008. Disponível em:
<https://doi.org/10.1080/07357900802112693> Acesso em:10 set. 2020.


BERMÚDEZ-MORALES, V. H. et al. IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. Molecular Medicine Reports, v. 4, n. 2, p. 369–375, 2011.
Disponível em: <https://doi.org/10.3892/mmr.2011.429> Acesso em: 28 out. 2020.


BASHAW, A. A. et al. Regulatory T-cells but not IL-10 impair cell-mediated immunity in HPV+ hyperplastic epithelium. In Journal of Investigative Dermatology. Society for Investigative Dermatology, 2020. Disponível em: <https://doi.org/10.1016/j.jid.2020.10.011> Acesso em: 02 dez 2020.


BERTI, F.C.B. et al. The role of interleukin 10 in human papilloma virus infection and progression to cervical carcinoma. Cytokine & Growth Factor Reviews, v. 34, p. 1–13, 2017. Disponível em: < https://doi.org/10.1016/j.cytogfr.2017.03.002> Acesso em: 13 out. 2020.


BHAIRAVABHOTLA, R. K. et al. Role of IL-10 in immune suppression in cervical cancer. Indian Journal of Biochemistry and Biophysics, v. 44, n. 5, p. 350–356, 2007. Disponível em:
<http://nopr.niscair.res.in/bitstream/123456789/135/1/IJBB%2044%285%29%20%282007%2 9%20350-356.pdf> Acesso em: 10 set. 2020.


BOTELHO, L. L. R., CUNHA, C. C. DE A., MACEDO, M. O Método Da Revisão
Integrativa Nos Estudos Organizacionais. Gestão e Sociedade, v. 5, n. 11, p. 121, 2011. Disponível em: <https://doi.org/10.21171/ges.v5i11.1220> Acesso em: 02 nov. 2020.


BOYANO, M. D. et al. Soluble interleukin-2 receptor, intercellular adhesion molecule-1 and interleukin-10 serum levels in patients with melanoma. British Journal of Cancer, v. 83, n.7, p. 847–852, 2000. Disponível em: <https://doi.org/10.1054/bjoc.2000.1402> Acesso em: 02 dez. 2020.


BROWER, V. Researchers attempting to define role of cytokines in cancer risk. In Journal of the National Cancer Institute, v. 97, n. 16, p. 1175–1177, 2005. Disponível em:
<https://doi.org/10.1093/jnci/dji269> Acesso em: 10 nov. 2020.


CASTELLSAGUE, X., MENA, M., ALEMANY, L. Epidemiology of HPV-Positive Tumors in Europe and in the World. Recent Results in Cancer Research. Fortschritte Der Krebsforschung. Progres Dans Les Recherches Sur Le Cancer, v. 206, p. 27–35, 2017. 49 Disponível em: <https://doi.org/10.1007/978-3-319-43580-0_2> Acesso em: 13 out. 2020.


CASTLE, P. E. et al. Cervical concentrations of interleukin-10 and interleukin-12 do not correlate with plasma levels. Journal of Clinical Immunology, v. 22, n. 1, p. 23–27, 2002. Disponível em: < https://link.springer.com/article/10.1023/A:1014252402630> Acesso em:02 dez. 2020.


CLERICI, M. et al. Cytokine production patterns in cervical intraepithelial neoplasia: association with human papillomavirus infection. Journal of the National Cancer Institute, v. 89, n. 3, p. 245–250, 1997. Disponível em: <https://doi.org/10.1093/jnci/89.3.245> Acesso
11 em: 05 nov. 2020.


COLPANI, V. et al. Prevalence of papillomavirus in Brazil: a systematic review protocol. BMJ Open, v. 6, n. 11, 2016. Disponível em: <https://doi.org/10.1136/bmjopen-2016- 011884> Acesso em: 16 out. 2020.


CROW, J. M. HPV: The global burden. Nature, 2012. Disponível em:
<https://doi.org/10.1038/488S2a> Acesso em: 19 out. 2020.


DAUD, I. I. et al. Association between toll-like receptor expression and human papillomavirus type 16 persistence. International Journal of Cancer, v. 128, n. 4, p. 879– 886, 2011. Disponível em: <https://doi.org/10.1002/ijc.25400> Acesso em: 18 abr. 2020.


DEVRIES, S. et al. Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors. Journal of Molecular Diagnostics, v. 7, n. 1, p. 65–71, 2005. Disponível em: <https://doi.org/10.1016/S1525-1578(10)60010-4> Acesso em: 19 out. 2020.


DINIZ, G. C. Vírus Do Papiloma Humano (Hpv): Aspectos Moleculares, Reação Imunológica Do Hospedeiro E Bases Do Desenvolvimento Da Vacina. Revista Interdisciplinar de Estudos Experimentais - Animais e Humanos Interdisciplinary Journal of Experimental Studies, v. 1, n. 3, p. 114–120, 2010. Disponível em:
<http://periodicos.ufjf.br/index.php/riee/article/view/23912/13222> Acesso em: 20 nov. 2020.


DU, G. H. et al. Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. International Immunopharmacology, v. 66, n. 32, p. 154–161, 2019. Disponível em:
<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6348885/> Acesso em: 10 set. 2020.


EL-SHERIF, A. M. et al. Quantitative analysis of IL-10 and IFN-γ mRNA levels in normal cervix and human papillomavirus type 16 associated cervical precancer. Journal of Pathology, v. 195, n. 2, p. 179–185, 2001. Disponível em:<https://doi.org/10.1002/path.929>

Acesso em: 02 dez. 2020.


FERNANDES, J. V. et al. Link between chronic inflammation and human papillomavirus- induced carcinogenesis (Review). Oncology Letters, v. 9, n. 3, p. 1015–1026, 2015.
Disponível em: <https://doi.org/10.3892/ol.2015.2884> Acesso em: 24 out. 2020.


FERNANDES, J. V. et al. Comparação de três protocolos de extração de DNA a partir de tecido fixado em formol e incluído em parafina. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 40, n. 3, p. 141–146, 2004. Disponível em: <https://doi.org/10.1590/s1676-
24442004000300003> Acesso em: 15 out. 2020.


FORMAN, D. et al. Global burden of human papillomavirus and related diseases. Vaccine, 30 Suppl 5, p. 12-23, 2012. Disponível em: <https://doi.org/10.1016/j.vaccine.2012.07.055>
Acesso em: 18 mar. 2020.


GARCIA, P. et al. Haplotypes of the IL10 gene as potential protection factors in leprosy patients. Clinical and Vaccine Immunology, v. 20, n. 10, p. 1599–1603, 2013. Disponível em: <https://doi.org/10.1128/CVI.00334-13> Acesso em: 24 out. 2020.


GERAETS, D. et al. Detection of rare and possibly carcinogenic human papillomavirus genotypes a single infection in invasive cervical cancer. The Journal of Pathology, v. 228, n. 4, p. 534–543, 2012. Disponível em: <https://doi.org/10.1002/path.4065> Acesso em: 10 out.
2020.


GIANNINI, S. L. et al. Cytokine expression in squamous intraepithelial lesions of the uterine cervix: Implications for the generation of local immunosuppression. Clinical andExperimental Immunology, v. 113, n. 2, p. 183–189, 1998. Disponível em:
<https://doi.org/10.1046/j.1365-2249.1998.00639.x> Acesso em: 30 nov. 2020.


GIANNINI, S. L. et al. Influence of the mucosal epithelium microenvironment on Langerhans cells: Implications for the development of squamous intraepithelial lesions of the cervix.
International Journal of Cancer, v. 97, n. 5, p. 654–659, 2002. Disponível em:
<https://doi.org/10.1002/ijc.10084> Acesso em: 16 nov. 2020.


GILBERT, M. T. P. et al. The Isolation of Nucleic Acids from Fixed, Paraffin-Embedded Tissues-Which Methods Are Useful When? PLoS ONE, v. 2 n. 6, 2007. Disponível em:
<https://doi.org/10.1371/journal.pone.0000537> Acesso em: 11 out. 2020.


GILLISON, M. L. Human papillomavirus and prognosis of oropharyngeal squamous cell carcinoma: Implications for clinical research in head and neck cancers. Journal of Clinical Oncology, v. 24, n. 36, p. 5623–5625, 2006. Disponível em:

<https://doi.org/10.1200/JCO.2006.07.1829> Acesso em: 02 dez. 2020.


GUO, M., GONG, Y. et al. Evaluation of a commercialized in situ hybridization assay for detecting human papillomavirus DNA in tissue specimens from patients with cervical intraepithelial neoplasia and cervical carcinoma. Journal of Clinical Microbiology, v. 46, n. 1, p. 274–280, 2008. Disponível em: <https://doi.org/10.1128/JCM.01299-07> Acesso em: 17
out. 2020.


HOLLER, E. et al. Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation. Bone Marrow Transplantation, v. 25, n. 3, p. 237– 241, 2000. Disponível em: < https://doi.org/10.1038/sj.bmt.1702126> Acesso em: 02 dez.
2020.


IARCA. Estimated number of deaths in 2018, worldwide, females, all ages. CANCER TODAY, v. 017, p. 1, 2021. Disponível em:< https://gco.iarc.fr/today/online-analysis-multi- bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=90 0&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0& ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10&group_cancer=1&include
_nmsc=1&include_nmsc_other=1&type_multiple=%257B%2522inc%2522%253Atrue%252 C%2522mort%2522%253Afalse%252C%2522prev%2522%253Atrue%257D&orientation=h orizontal&type_sort=0&type_nb_items=%257B%2522top%2522%253Atrue%252C%2522bo ttom%2522%253Afalse%257D > Acesso em: 12 maio 2021.


INCA. INSTITUTO NACIONAL DO CANCER(BRASIL). Disponível em:
<https://www.inca.gov.br/numeros-de-cancer>. Acesso em: 12 maio 2020.


JAFARI-NEDOOSHAN, J. et al. Association of promoter region polymorphisms of IL-10 gene with susceptibility to lung cancer: Systematic review and meta-analysis. Asian Pacific Journal of Cancer Prevention, v. 20, n. 7, p. 1951–1957, 2019. Disponível em:
<https://doi.org/10.1128/JCM.01299-07> Acesso em: 25 out. 2020.


JAMMAL, M. P. et al. Immunohistochemical staining of tumor necrosis factor-α and interleukin-10 in benign and malignant ovarian neoplasms. Oncology Letters, v. 9, n. 2, p. 979–983, 2015. Disponível em: <https://doi.org/10.3892/ol.2014.2781> Acesso em: 16 out.
2020.


KELLEY, M. L., et al. The Global Transcriptional Effects of the Human Papillomavirus E6 Protein in Cervical Carcinoma Cell Lines Are Mediated by the E6AP Ubiquitin Ligase.
Journal of Virology, v. 79, n. 6, p. 3737–3747, 2005. Disponível em:
<https://doi.org/10.1128/jvi.79.6.3737-3747.2005> Acesso em: 06 nov. 2020.


KOBAYASHI, A. et al. Evolving immunosuppressive microenvironment during human

cervical carcinogenesis. Mucosal Immunology, v. 1, n. 5, p. 412–420, 2008. Disponível em:
<https://doi.org/10.1038/mi.2008.33> Acesso em: 18 mar. 2020.


KOROBEINIKOVA, E. et al. The prognostic value of IL10 and TNF alpha functional polymorphisms in premenopausal early-stage breast cancer patients. BMC Genetics, v. 16, n. 1, p. 1–11, 2015. Disponível em: <https://link.springer.com/article/10.1186/s12863-015-0234-
8> Acesso em: 05 out. 2020.


KUNDU, N., FULTON, A. M. Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cellular Immunology, v. 180, n. 1, p. 55–61, 1997.
Disponível em: <https://doi.org/10.1006/cimm.1997.1176> Acesso em: 11 maio 2020.


LIU, C. Z. et al. Overexpression and immunosuppressive functions of transforminggrowth factor 1, vascular endothelial growth factor and interleukin-10 in epithelial ovarian cancer. Chinese Journal of Cancer Research, v. 24, n. 2, p. 130–137, 2012. Disponível em:
<https://doi.org/10.1007/s11670-012-0130-y> Acesso em: 11 nov. 2020.


MAGALHAES, I. M. et al. Comparação de dois pares de oligonucleotídeos utilizados na reação em cadeia da polimerase para detecção de Papilomavírus Humanos em esfregaços cervicais. Jornal Brasileiro de Doenças Sexualmente Transmissíveis, v. 20, n. 2, p. 93–98, 2008. Disponível em: <http://www.academia.edu/download/43245243/4.pdf> Acesso em: 06 nov. 2020.


MANNINO, M. H. et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Letters, v. 367, n. 2, p. 103–107, 2015. Disponível em:
<https://doi.org/https://doi.org/10.1016/j.canlet.2015.07.009> Acesso em: 02 dez. 2020.


MAPARA, M. Y., SYKES, M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, v. 22, n. 6, p. 1136–1151, 2004. Disponível em:
<https://doi.org/10.1200/JCO.2004.10.041> Acesso em: 25 out. 2020.


MARQUES, A. H., CIZZA, G., STERNBERG, E. Brain-immune interactions and implications in psychiatric disorders. Revista Brasileira de Psiquiatria, v. 29, n. 1, p. 27–32, 2007. Disponível em: <https://doi.org/10.1590/S1516-44462007000500006> Acesso em: 18 abr. 2020.


MESQUITA, R. A. et al. Evaluation of 3 methods of DNA extraction from paraffin- embedded material for the amplification of genomic DNA using PCR. Pesquisa Odontológica Brasileira = Brazilian Oral Research, v. 15, n. 4, p. 314–319, 2001. Disponível em: <https://doi.org/10.1590/S1517-74912001000400008> Acesso em: 25 out. 2020.


MINDIOLA, R. et al. Increased number of IL-2, IL-2 receptor and IL-10 positive cells in premalignant lesions of the cervix. Investigacion Clinica, v. 49, n. 4, p. 533–545, 2008. Disponível em: < https://www.redalyc.org/pdf/3729/372940297008.pdf> Acesso em: 02 dez. 2020.


MOCELLIN, S., MARINCOLA, F. M., YOUNG, H. A. Interleukin-10 and the immune response against cancer: a counterpoint. Journal of Leukocyte Biology, v. 78, n. 5, p. 1043– 46 1051, 2005. Disponível em: <https://doi.org/10.1189/jlb.0705358> Acesso em: 16 nov.
2020.


MONTENEGRO, L. A. S., VELOSO, H. H. P., CUNHA, P. Â. S. M. A. Papilomavírus
humano como fator carcinogênico e co-carcinogenico do câncer oral e da orofaringe. Rev Odontol Bras Central, v. 23, n. 67, p. 217–225, 2014. Disponível em:
<http://robrac.org.br/seer/index.php/ROBRAC/article/download/834/764> Acesso em: 16 nov. 2020.


MOORE, K. W. et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells. This information is current as Email Alerts Information about subscribing to The Journal of Immunology is online at: on the antigen-presenting cell to inhibit cytokin. v. 146, n. 6, 2016. Disponível em: <https://www.jimmunol.org/content/146/10/3444.short>
Acesso em: 06 nov. 2020.


MOSTRAM, E., Infec, Q. U. E., Hpv, P., Estar, P., Dos, P., Com, P., & Orofaringe, N. D. E.
Mudança de rumo. p. 22–24, 2014. Disponível em:
<https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//rrc-31- epidemiologia-mudanca-de-rumo.pdf> Acesso em: 13 nov. 2020.


MOTA, F. et al. The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clinical and Experimental Immunology, v. 116, n. 1, p. 33–40, 1999. Disponível em: <https://doi.org/10.1046/j.1365- 2249.1999.00826.x> Acesso em: 06 nov.2020.


NI, J., YE, Y., TENG, F., WU, Q. Interleukin 10 polymorphisms and cervical cancer risk: A meta-analysis. International Journal of Gynecological Cancer, v. 23, n. 1, p. 126–133, 2013. Disponível em: <https://doi.org/10.1097/IGC.0b013e318274b1a2> Acesso em: 24 out. 2020.


OWOSHO, A. A. et al. Trends in Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma Incidence, Vermont 1999–2013. Journal of Community Health, v. 43, n. 4, p. 731–737, 2018. Disponível em: <https://doi.org/10.1007/s10900-018-0477-1> Acesso em: 15 nov. 2020.


PETITO, G. et al. Papilomavírus humano (HPV) em carcinomas de cavidade oral e orofaringe na região central do Brasil. Brazilian Journal of Otorhinolaryngology, v. 83, n. 1, p. 38–44, 2017. Disponível em: <https://doi.org/10.1016/j.bjorl.2016.01.004> Acesso em: 16 out. 2020.


PINION, S. B. et al. Oncogene expression in cervical intraepithelial neoplasia and invasive cancer of cervix. The Lancet, v. 337, n. 8745, p. 819–820, 1991. Disponível em:
<https://doi.org/10.1016/0140-6736(91)92518-7> Acesso em: 28 out. 2020.


PRATA, T. T. et al. Local immunosuppression induced by high viral load of human papillomavirus: Characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology, v. 146, n. 1, p. 113–121, 2015. Disponível:
<https://doi.org/10.1111/imm.12487> Acesso em: 10 set. 2020.


RAMA, C. H., et al. Serological detection of anti HPV 16/18 and its association with pap smear in adolescents and young women. Revista Da Associacao Medica Brasileira, v. 52, n. 1, p. 43–47, 2006. Disponível em: <https://doi.org/10.1590/s0104-42302006000100021>
Acesso em: 28 out. 2020.


RIVERO, E. R. C. et al. Simple salting-out method for DNA extraction from formalin-fixed, paraffin-embedded tissues. Pathology Research and Practice, v. 202, n. 7, p. 523–529, 2006. Disponível em: <https://doi.org/10.1016/j.prp.2006.02.007> Acesso em: 27 nov. 2020.


SANTIN, A. D. et al. Interleukin-10 increases Th1 cytokine production and cytotoxic potential in human papillomavirus-specific CD8+ cytotoxic T lymphocytes. Journal of Virology, v. 74, n. 10, p. 4729–4737, 2000. Disponível em: <https://doi.org/10.1128/JVI.74.10.4729-
4737.2000> Acesso em: 11 maio 2020.


SANTOS, M. de O. Estimativa 2018: Incidência de Câncer no Brasil. Revista Brasileira de Cancerologia, v. 64, n. 1, p. 119–120, 2018. Disponível em:
<https://doi.org/10.32635/21769745.rbc.2018v64n1.115> Acesso em: 12 out. 2020.


SANTOS, S. et al. An efficient protocol for genomic DNA extraction from formalin-fixed paraffin-embedded tissues. Research in Veterinary Science, v. 86, n. 3, 421–426, 2009. Disponível em: <https://doi.org/10.1016/j.rvsc.2008.08.007> Acesso em: 24 nov. 2020.


SCORSATO, A. P., TELLES, J. E. Q. Factors that affect the quality of DNA extracted from biological samples stored in paraffin blocks. Jornal Brasileiro de Patologia e Medicina Laboratorial, v. 47, n. 5, p. 541–548, 2011. Disponível em:
<https://doi.org/10.1590/s167624442011000500008> Acesso em:26 out.2020.

SCOTT, M. E., Ma, Y., Farhat, S., Moscicki, A. B. Expression of nucleic acid-sensing Toll- like receptors predicts HPV16 clearance associated with an E6-directed cell-mediated response. International Journal of Cancer, v. 136, n. 10, p. 2402–2408, 2015. Disponível em: <https://doi.org/10.1002/ijc.29283> Acesso em: 18 abr. 2020.


SEER. NATIONAL CANCER INSTITUTE; SURVEILLANCE,Epimedemiology and
Results Program U.seer. Cancer Stat Facts: Cervical Cancer, p. 8, 2021. Disponível em: < https://seer.cancer.gov/statfacts/html/cervix.html> Acesso em: 12 maio 2021.


SHRESTHA, S., et al. Interleukin-10 gene (IL10) polymorphisms and human papillomavirus clearance among immunosuppressed adolescents. Cancer Epidemiology Biomarkers and Prevention, v. 16, n. 8, p. 1626–1632, 2007. Disponível em: <https://doi.org/10.1158/1055-9965.EPI-
06-0881> Acesso em: 10 set. 2020.


SINGHAL, P. et al. Association of IL-10 GTC haplotype with serum level and HPV infection in the development of cervical carcinoma. Tumor Biology, v. 36, n. 4, p. 2287–2298, 2015. Disponível em: <https://doi.org/10.1007/s13277-014-2836-6> Acesso em: 10 set. 2020.


SYRJÄNEN, S. et al. Immunosuppressive cytokine Interleukin-10 (IL-10) is up-regulated in high-grade CIN but not associated with high-risk human papillomavirus (HPV) at baseline, outcomes of HR-HPV infections or incident CIN in the LAMS cohort. Virchows Archiv, v. 455, n. 6, p. 505–515, 2009. Disponível em: <https://doi.org/10.1007/s00428-009-0850-7>
Acesso em: 16 nov. 2020. 14


THE GLOBAL CANCER OBSERVATORY (IARCA). Estimated number of prevalent cases (5-year) in 2018, worldwide, females, all ages. Cancer Today, v. 476, 2018. Disponível em:
<http://gco.iarc.fr/today/online- analysistable?v=2018&mode=population&mode_population=countries&population=900&po pulation s=900&key=asr&sex=0&cancer=35&type=2&statistic=5&prevalence=1&population_group= 0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=5&gro> Acesso em: 12 maio. 2021.


TIMMANN, C. et al. Promoter haplotypes of the interleukin-10 gene influence proliferation of peripheral blood cells in response to helminth antigen. Genes and Immunity, v. 5, n. 4, p. 256–260, 2004. Disponível em: <https://doi.org/10.1038/sj.gene.6364094> Acesso em: 07
nov. 2020.


VAN DAM, P. A. et al. RANK-RANKL signaling in cancer of the uterine cervix: A review.
International Journal of Molecular Sciences, v. 20, n. 9, p. 1–15, 2019. Disponível em:
<https://doi.org/10.3390/ijms20092183> Acesso em: 02 dez. 2020.


VIEIRA, P. et al. Isolation and expression of human cytokine synthesis inhibitory factor

cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFI. Proceedings of the National Academy of Sciences of the United States of America, v. 88, n. 4, p. 1172– 1176, 1991. Disponível em: <https://doi.org/10.1073/pnas.88.4.1172> Acesso em: 27 out.2020.


VINCEK, V. et al. A Tissue Fixative that Protects Macromolecules (DNA, RNA, and Protein) and Histomorphology in Clinical Samples. Laboratory Investigation, v. 83, n. 10, p. 1427– 1435. Disponível em: <https://doi.org/10.1097/01.LAB.0000090154.55436.D1> Acesso em: 25 nov. 2020.


WANG, L. X., et al. IL-10 Contributes to the Suppressive Function of Tumour-Associated Myeloid Cells and Enhances Myeloid Cell Accumulation in Tumours. Scandinavian Journal of Immunology, v. 75, n. 3, p. 273–281, 2012. Disponível em:<https://doi.org/10.1111/j.1365-
3083.2011.02662.x> Acesso em: 25 nov. 2020.


WANG, Y. et al. The paradox of IL-10-mediated modulation in cervical cancer. Biomedical Reports, v. 1, n. 3, p. 347–351, 2013. Disponível em: <https://doi.org/10.3892/br.2013.69>
Acesso em: 29 abr. 2020.


WESTRA, W. H. Detection of human papillomavirus (HPV) in clinical samples: Evolving methods and strategies for the accurate determination of HPV status of head and neck carcinomas. Oral Oncology, v. 50, n. 9, p. 771–779, 2014. Disponível em:
<https://doi.org/10.1016/j.oraloncology.2014.05.004> Acesso em: 28 out. 2020.


WIJESOORIYA, N. S. et al. Global burden of maternal and congenital syphilis in 2008 and 2012: a health systems modelling study. Lancet Global Health, v. 4, n. 8, p. 525–533, 2016. Disponível em: <https://doi.org/10.1016/S2214-109X(16)30135-8> Acesso em: 06 nov. 2020.


WOODS, K. V. et al. Interleukin-1 regulates interleukin-6 secretion in human oral squamous cell carcinoma in vitro: Possible influence of p53 but not human papillomavirus E6/E7.
Cancer Research, v. 58, n. 14, p. 3142–3149, 1998. Disponível em:
<https://cancerres.aacrjournals.org/content/canres/58/14/3142.full.pdf> Acesso em: 01 dez. 2020.

Downloads

Publicado

2021-08-31