
 
 
 
 
 
 
 

 
Fronteiras: Journal of Social, Technological and Environmental Science • http://periodicos.unievangelica.edu.br/fronteiras/  
v.10, n.1, Jan.-Abr. 2021 • p. 241-270. • DOI http://dx.doi.org/10.21664/2238-8869.2021v10i1.p241-270 • ISSN 2238-8869 

241 
 

 
 
 
 

Starting Anti-COVID-19 Drug Discovery with 
Natural Products 

Osmar Nascimento Silva 1 
Bruno Juinor Neves 2 

Lucimar Pinheiro Rosseto 3 
Rodrigo Scaliant Moura 4 

Hamilton Napolitano 5 
Wesley Brito 6 

James Fajemiroye 7 
Emerith Pinto 8 

Pál Perjési 9 
José Luís Martins 10 

ABSTRACT 

COVID-19 was characterized as a pandemic regarding its rapid international spread and severity on March 2020. 
The Coronaviridae family receives this name regarding the organization of the spike glycoprotein located in the 
envelope, which resembles a stellar corona when observed under a microscope. Coronaviruses undergo frequent 
mutations in their genome due to errors made by RNA-dependent RNA polymerase (RdRp). The SARS-CoV-2 
was characterized by high infectivity and person to person transmission, with an incubation period of up to 
fourteen days. Potent antiviral activities of several natural products such as alkaloids, chalcones, triterpenoids 
have been reported but with unconfirmed efficacy or safety in the clinic as well as the complete underlying 
mechanisms. Also, CQ, HCQ and Ivermectin, remdesivir, lopinavir, ritonavir, favipiravir and pegylated 
interferon with ribavirin have been tested to develop both an effective therapy and a vaccine to treat COVID-19. 
This study investigated the antiviral effects of the natural products against SARS-CoV, HCoV-NL63, HCoV-
229E and HCoV-OC43. Also, the Lycorine, Emodin, Promazine, Saikosaponins B2, Silvestrol, Cepharanthine, 
Fangchinoline, Tetrandrine, Caffeic acid, Chlorogenic acid, Gallic acid and Emetine are considered an important 
hit compounds for prospective anti-SARS-CoV-2 drug discovery. 
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n December 2019, a new coronavirus was detected in patients with a type of viral pneumonia 

who, coincidentally, had visited the seafood market in the city of Wuhan, Hubei Province, China 

(Gorbalenya et al. 2020). In December 2019, the Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) was reported by the World Health Organization (WHO). In January 2020, the disease caused 

by SARS-CoV-2 was called coronavirus disease 19 (COVID-19). The SARS-CoV-2 was characterized 

by high infectivity and person to person transmission, with an incubation period of up to fourteen days 

(Cheng et al. 2006). COVID-19 was characterized as a pandemic regarding its rapid international spread 

and severity (WHO 2020). According to the International Virus Taxonomy Committee (ICTV), SARS-

CoV-2 is classified under the order of Nidovirales, family Coronaviridae, subfamily Orthocoronavirinae, genus 

Betacoronavirus, subgenus Sarbecovirus (de Groot et al. 2020). Coronaviridae is a family of positive-sense 

RNA viruses, enveloped with nonsegmented RNA genome (Fung & Liu 2019). 

The Coronaviridae family receives this name due to the organization of the spike (S) 

glycoprotein located in the envelope, which resembles a stellar corona when observed under a 

microscope (Schoeman & Fielding 2019). This Coronaviridae family is subdivided into two subfamilies: 

Letovirinae and Orthocoronavirinae, comprising 26 subgenera, 46 species. The subfamily Letovirinae has one 

genus, Letovirinae, and the subfamily Orthocoronavirinae has four genera Alphacoronavirus, Betacoronavirus, 

Deltacoronavirus, and Gammacoronavirus (WHO 2020). Alphacoronaviruses and Betacoronaviruses infect or 

cause disease in mammals, including humans (Abolnik 2015),  Deltacoronaviruses are related to diseases in 

birds and pigs (Paim et al. 2019), whereas Gammacoronaviruses are related to diseases in birds, dolphin, 

and whales (Mihindukulasuriya et al. 2008). Coronaviruses, like other RNA viruses, undergo frequent 

mutations in their genome due to errors made by RNA-dependent RNA polymerase (RdRp), 

presenting an average replacement rate of ~3×10-4 replacements per location per year (Fung & Liu 

2019; Pyrc et al. 2006; Su et al. 2016). The high frequency of recombination is another important aspect 

in the genetics of coronaviruses that can have significant effects on the pathogenesis and epidemiology 

of these viruses (Makino et al. 1986; Su et al. 2016). Besides, the large genome of coronaviruses, in 

relation to other viruses, with single-stranded RNA allows plasticity in modifying the genome through 

mutations and recombination, increasing the probability of intra-species and interspecies variability (Su 

et al. 2016). 

The SARS-CoV-2 is the result of viral recombination with the ability to break the biological 

barrier and escape the animal-animal cycle and infect humans by characterizing a zoonosis that, 

hypothetically, has the bat as the primary host (Q. Li et al. 2020). However, human to human 

transmission is what potentiates the epidemic characteristic of these infections (N. Zhu et al. 2020), 

I 



 Starting Anti-COVID-19 Drug Discovery with Natural Products 
 

Osmar Nascimento Silva, Bruno Junior Neves, Lucimar Rosseto, Rodrigo Scaliant Moura, Hamilton 
Napolitano, Wesley Brito, James Fajemiroye, Emerith Pinto, Pál Perjési, José Luís Martins 

 

 
Fronteiras: Journal of Social, Technological and Environmental Science • http://periodicos.unievangelica.edu.br/fronteiras/  
v.10, n.1, Jan.-Abr. 2021 • p. 241-270. • DOI http://dx.doi.org/10.21664/2238-8869.2021v10i1.p241-270 • ISSN 2238-8869 

243 
 

such as the epidemics caused by SARS-CoV and the Middle East respiratory syndrome (MERS)-CoV 

(Zhong et al. 2003). For the SARS-CoV-2 infection process to occur, glycoprotein S needs to be 

activated to bind to the incoming cell receptor. The initiation and activation process of glycoprotein S is 

mediated by host cell proteases, with the Transmembrane Protease Serine 2 (TMPRSS2) (Hoffmann et 

al. 2020) standing out and the angiotensin-converting enzyme receptor 2 (ACE2) is linked to the 

infection mechanism of some coronaviruses , among them SARS-CoV, responsible for the epidemic 

peak of this infection that occurred in China in 2002 (W. Li et al. 2003). The SARS-CoV-

2+glycoprotein S complex very efficiently uses ACE2 to enter cells, mainly in lung cells, correlating 

with the rapid spread of SARS-CoV-2 among humans (Walls et al. 2020). 

STRUCTURE AND BIOCHEMISTRY 

Coronaviruses genomic RNA has approximately 30 kb in length, with 14 open reading frames 

(ORF). The ORF1a and ORF1ab comprise approximately two-thirds of the genome and encodes a 

complex replicase machinery. Genes for four structural proteins (Spike, Envelope, Membrane, 

Nucleocapsid) may be found at the 3' end of the virus genome (Romano et al. 2020). An envelope-

anchored spike protein mediates coronavirus entry into host cells by first binding to a host receptor and 

then fusing viral and host membranes (Wan et al. 2020). Two receptors in humans cells have been 

described as possible routes of virus entrance, the angiotensin-converting enzyme 2 (ACE2) and 

CD147, both mediated by the spike (S) protein (Luan et al. 2020; K. Wang et al. 2020). The S protein is 

a multifunctional molecular machine that mediates coronavirus entry into host cells. It first binds to the 

ACE2 or CD147 receptors on the host cell surface through its S1 subunit and then fuses viral and host 

membranes through its S2 subunit  (Wang et al. 2020). To engage a host cell receptor, the receptor-

binding domain (RBD) of S1 undergoes hinge-like conformational movements that transiently hide or 

expose the determinants of receptor binding. Because of the indispensable function of the S protein, it 

represents a target for antibody-mediated neutralization, or its receptors may act as candidates for 

vaccine antigens (Wan et al. 2020; Shang et al. 2020). 

The SARS-CoV-2 shares 79.6% of sequence identity to SARS-CoV and is 96% identical at the 

whole-genome level to BatCoV RaTG13 (a bat coronavirus) (Zhou et al. 2020). The SARS-CoV-2 

shares the same receptor that SARS-CoV and RaTG13 (ACE2) in humans (Shang, Ye, et al. 2020; Wan 

et al. 2020; Li 2005). The crystal structure of the receptor-binding domain (RBD) of SARS-CoV-2 

shows a more compact conformation in comparison to the SARS-CoV RBD. Moreover, several residue 

changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD–ACE2 interface 

resulting in increased binding affinity (Shang Ye et al. 2020; Wrapp et al. 2020). Five out of six critical 
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amino acid residues in the spike protein for binding to ACE2 receptors differ between SARS-CoV-2 

and SARS-CoV, as the RBD in the spike protein is the most variable part of the coronavirus genome 

(Zhou et al. 2020; Wrapp et al. 2020). The analysis of the ACE2-binding ridge in SARS-CoV-2 supports 

the notion that SARS-CoV-2 is associated with RaTG13 or a RaTG13-related bat coronavirus since 

both viruses contain a similar four-residue motif in that region. These features may have facilitated 

SARS-CoV-2 to transmit from bats to humans since small differences between the RaTG13 and SARS-

CoV-2 spike proteins enhanced ACE2 recognition in the later (Shang Ye et al. 2020). 

CORONAVIRUS GLYCOPROTEINS 

The spike glycoprotein (S) called CoV S protein is the main structural protein in the 

coronavirus envelope. This protein forms projections about 20 nm in length and is the most 

polymorphic protein among coronaviruses organized as dimers or trimers. CoV S protein has two well-

known functions, which are to fix and activate the fusion of the viral envelope with the host cell 

membrane, which contributes to the release of the viral genome into the cell (Bosch et al. 2003; Ou et 

al. 2020). CoV S protein has ~1,200aa of length and is cleaved post-translation into two subunits: 

amino-terminal S1 and carboxy-terminal S2, with about 500 and 600aa, respectively. The S protein is 

anchored by the carboxy-terminal portion of the S2 subunit in the viral envelope through a small 

hydrophobic transmembrane segment, forming the support of the spike, while the S1 subunit is 

globular and forms the part of the bulb present in the ectodomain of this protein (Binns et al. 1985; 

Spiga et al. 2003). 

The S1 subunit contains the main epitopes targeted for the combination with neutralizing 

antibodies, which are made up of certain amino acid sequences that confer the serotype specificity to 

each viral strain (X.-J. Yu et al. 2003; Ou et al. 2020). Another characteristic of the S1 subunit is that it 

has regions in its sequence that have great variability, regions that are called: hypervariable region 1 

(HVR I), delimited by amino acid residues 38 to 69; hypervariable region 2 (HVR II), delimited by 

amino acid residues 91 to 141; and the hypervariable region 3 (HVR III) comprising amino acid residue 

250 to 387. Several studies have demonstrated the importance of these three hypervariable regions in 

the direct interaction with neutralizing antibodies and, therefore, constitute the serotype-specific 

determinants presented by the different strains of coronavirus (Takiuchi et al. 2007; Jaimes et al. 2020). 

Regarding viral protein structures are important tools on immunopathological understanding, the S1 

subunit anchored in the ECA 2 receptor in pneumocytes II regulates transmissions between species 

and from human to human (Geng Li et al. 2020; W. Li et al. 2003). 
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Angiotensin-converting enzyme 2 (ACE2) is an 805 amino acid metalloprotease that has 

considerable homology with ACE (Tipnis et al. 2000). ACE2 is a type I membrane protein that acts as a 

carboxypeptidase and not as a dipeptidyl carboxypeptidase like ACE (Guy et al. 2003). It is expressed in 

kidney cells, heart, blood vessels, gastrointestinal tract, liver, spleen, brain, placenta, and lungs(Gang Li, 

Hu & Zhang 2020). ACE2 is highly expressed in the kidneys and the cardiovascular and gastrointestinal 

systems, being expressed at lower levels in the central nervous system, lymphoid tissue, and lungs 

(Donoghue et al. 2000; Xudong et al. 2006; Valdés et al. 2006). In lungs, ACE2 is mainly expressed in 

the pulmonary AT2 alveolar epithelial cells, which are particularly prone to viral infections (Uhal et al. 

2011). 

ACE2 exhibits biochemical activities different from ACE, converting angiotensin I into 

angiotensin-(1-9) (Donoghue et al. 2000). Angiotensin-(1-9), whose actions have not yet been well 

defined, is hydrolyzed by ACE to angiotensin-(1-7). Another action of ACE2 is the hydrolysis of 

angiotensin II, with the removal of an amino acid, producing, from there, angiotensin-(1-7) (Crackower 

et al. 2002). The catalytic action of ACE2 is approximately 500x more efficient when the substrate is 

angiotensin II, compared to its action on angiotensin I. ACE2 is, moreover, 10–600x more potent than 

prolyl endopeptidase and prolyl-carboxypeptidase, respectively, to generate angiotensin-(1-7) from 

angiotensin II (Vickers et al. 2002). Several studies have shown that ACE2 expression in human tissues 

correlates with SARS-CoV and SARS-CoV-2 infection sites, including lung, kidney, and intestine 

(Sungnak et al. 2020; Zhao et al. 2020), which may be associated with complications in these organs 

resulting from the SARS-CoV-2 infection. 

Similar to SARS-CoV infection, the S1 subunit of the CoV S protein contains a conserved 

Receptor-Binding Domain (RBD), which recognizes the host cell's angiotensin-converting enzyme 2 

(ACE2). The CoV S protein is activated and cleaved by the the membrane-anchored serine 

transmembrane protease 2 (TMPRSS2), and the typically intracellular cysteine proteases cathepsin B/L, 

and/or furin, allowing the virus to release fusion peptides and fuse with the membrane. The co-

expression of ACE2 and TMPRSS2, cathepsin, and/or furin is a key determinant for SARS-CoV-2 

entry into host cells (Hoffmann et al. 2020; Kawase et al. 2012; Coutard et al. 2020). Thus, the virus 

promotes a decrease in the expression of ACE2, which would be responsible, physiologically, for 

protective actions of the lung due to its negative regulation on the activity of the renin-angiotensin 

system that is reported as harmful to the lungs. Thus, the decrease in ACE2 activity affects the 

exacerbation of atrophic, fibrotic, pro-oxidant, and vasoconstrictor processes in the lung (Zhao et al. 

2020). 
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CORONAVIRUS PROTEASES 

Similar to the SARS-CoV and the MERS-CoV, the SARS-CoV-2 genome encodes 

nonstructural proteins (such as papain-like protease (nsp3), 3-chymotrypsin-like protease (nsp5), 

helicase (nsp13), and RNA-dependent RNA polymerase (nsp12)), structural proteins (such as spike 

glycoprotein) and accessory proteins (Woo et al. 2010; Lai 1990). The four mentioned nonstructural 

proteins are key enzymes in the viral reproduction, and the spike (S) glycoprotein plays an essential role 

in the entry of the virus to the host cells. Accordingly, each of these five proteins is recognized as 

attractive targets to design and develop antiviral agents against SARS and MERS. The genome of SARS 

encodes two polyproteins, namely ppla and pplb. These polyproteins are cleaved to different functional 

proteins by the papain-like protease (PLpro) and/or the 3-chymotrypsin-like protease (3CLpro), which is 

frequently referred to as main protease (Mpro) (Ziebuhr, Snijder & Gorbalenya 2000). 

Proteases are enzymes whose catalytic function is to hydrolyze peptide bonds of proteins. 

Based on the catalytic mechanisms, proteases are classified into nine different groups: metallo, aspartic, 

cysteine, serine, glutamic, asparagine, threonine, mixed catalytic type, and unknown catalytic type 

proteases (Rawlings et al. 2018). Coronavirus proteases belong to the cysteine protease class (Lai 1990). 

Cysteine proteases hydrolyze a peptide bond using the thiol group of a cysteine residue as a 

nucleophile. Hydrolysis usually involves a catalytic triad consisting of the thiol group of the cysteine, 

the imidazole ring of a histidine, and a third residue, in most of them, to orientate and activate the 

imidazole ring (Báez-Santos, St. John & Mesecar 2015). Although the primary function of PLpro and 

3CLpro is to process the viral polyprotein in a coordinated manner, PLpro has the additional role of 

stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host 

innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not 

only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected 

cells that may lead to cell death in the surrounding, uninfected cells (Anand et al. 2003). 

SARS-CoV-2 PLpro X-ray structure – unbound (Ratia et al. 2014) or inhibitor-complexed 

(Ghosh et al. 2009, 2010; Báez-Santos et al. 2014)- have been investigated by several authors. Báez-

Santos et al. grouped the known SARS-CoV-2 PLpro inhibitors into six different classes, one of them 

being the inhibitors of natural origin. Among the natural products, tanshinones, diarylheptanoids, and 

geranylated flavonoids were mentioned (Báez-Santos et al. 2014). Kim et al. found some phenolic 

components of ethanol extract of the seeds of Psoralea corylifolia to show high activity against the SARS-

CoV PLpro with an IC50 value of 15 µg/ml (D. W. Kim et al. 2014). The structure of the compounds – 

belonging to the geranylated flavonoids class - are shown in Figure 1. Furthermore, Lee et al. 
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demonstrated that the MERS-CoV PLpro blocking loop 2 (BL2) structure significantly differs from that 

of SARS-CoV PLpro, where it has been proven to play a crucial role in SARS-CoV PLpro inhibitor 

binding (H. Lee et al. 2015). The authors tested four SARS-CoV PLpro lead inhibitors against MERS-

CoV PLpro. None of them were effective against MERS-CoV PLpro. Recently, Arya et al. performed an 

in silico docking studies of several FDA approved drugs and the homology model of the SARS-CoV 

PLpro enzyme. In this study, sixteen FDA approved drugs, including chloroquine and formoterol, was found 

to bind the target enzyme with significant affinity and proper geometry, suggesting their potential to be 

utilized against the virus (Arya et al. 2020). 

The indispensable role of coronavirus main protease (Mainpro) in its essential role in processing 

the polyproteins that are translated from the viral RNA, makes it a popular target for drug design. 

Following the first SARS coronavirus outbreak in 2002, a series of inhibitors of Mainpro of the SARS-

CoV was reported (Bacha et al. 2004; Jain et al. 2004; Wu et al. 2004). These early studies concentrated 

on (1) testing peptidomimetics, similar to the HIV protease inhibitors ritonavir and lopinavir, and (2) 

analogs of the natural products which had been reported to show antiviral and antimicrobial effects (L. 

Wang et al. 2015; Zaman et al. 2017). Wu et al., for example, used a cell-based assay to screen more 

than 10,000 compounds, all administered at 10 μM, for inhibition of the cytopathic effect of the SARS-

CoV virus. The authors found valinomycin, a peptide insecticide, to be the most effective of the screened 

compounds with an EC50 of 0.85 μM. Beta-aescin and reserpine were also found active. Compounds that 

are structurally similar to reserpine and beta-aescin were also tested, resulting in 10 new anti-SARS 

active compounds (Wu et al. 2004). Based on the high similarity of Mpros in each CoV group, some 

wide-spectrum Michael acceptor peptidomimetic inhibitors (I2, N1, and N3) targeting SARS-CoV 

Mainpro enzymes (Figure 2) (Yang et al. 2005). 

Yang and coworkers was first publishing the X-ray analysis of the SARS-CoV Mainpro 

holoenzyme and its complex with its inhibitor, chloromethyl ketone (CMK) (Yang et al. 2003). In 

contrast to common serine proteases, which have a Ser–His–Asp catalytic triad, SARS Mpro has a Cys–

His catalytic dyad (Cys-145 and His-41), which is similar to the TGEV Mpro (Cys-144 and His-41) and 

the HCoV 229E Mpro (Cys-144 and His-41) (Anand et al. 2003). Jin et al. reported on the crystal 

structure of the SARS-CoV-2 Mpro-N3 complex, demonstrating a similar binding mode in the SARS 

CoV Mpro-N1 and the SARS CoV-2 Mpro-N3 complexes. The authors used a FRET assay to screen 

about 10,000 compounds, consisting of approved drugs, clinical-trial drug candidates, and natural 

products. The primary hits were seven compounds, including disulfiram, carmofur, and ebselen (Jin et al. 

2020). 



 Starting Anti-COVID-19 Drug Discovery with Natural Products 
 

Osmar Nascimento Silva, Bruno Junior Neves, Lucimar Rosseto, Rodrigo Scaliant Moura, Hamilton 
Napolitano, Wesley Brito, James Fajemiroye, Emerith Pinto, Pál Perjési, José Luís Martins 

 

 
Fronteiras: Journal of Social, Technological and Environmental Science • http://periodicos.unievangelica.edu.br/fronteiras/  
v.10, n.1, Jan.-Abr. 2021 • p. 241-270. • DOI http://dx.doi.org/10.21664/2238-8869.2021v10i1.p241-270 • ISSN 2238-8869 

248 
 

Some docking studies to find homoisoflavanones and their thio analogs as inhibitors of the 

mutant coronavirus main protease enzyme SARC-CoV-2 Mpro were performed (Sepay et al. 2020). 

Based on the binding properties, they predicted the homoisothioflavone 7 (Figure 3) as a prosperous 

candidate for further investigations (Sepay et al. 2020). Furthermore, the structure-based virtual 

screening and molecular dynamic simulation indicated natural compounds with strong binding affinity 

and the ability to inhibit the SARS-CoV-2 Mainpro enzyme. The authors had a library of 1,048 natural 

compounds isolated from edible African plants. Rhamnetin (8) and ellagic acid (9) (Figure 3) showed a 

better therapeutic prediction than compound N3 used as standard (Azhagiya Singam et al. 2020). 

HOST CELL PROTEASES 

As for the natural product-based antiviral strategies, each step of the viral life cycle could be 

taken into consideration. The virus replication cycle can be divided into six structurally and 

biochemically different stages: (1) attachment of the virus to receptors on the host cell surface; (2) entry 

of the virus through the host cell membrane; (3) uncoating of viral nucleic acid; (4) replication, 

involving (a) synthesis of early regulatory proteins, (b) synthesis of new viral RNA or DNA; and (c) 

synthesis of late, structural proteins; (5) assembly (maturation) of viral particles; and (6) release from the 

host cell (Lindenbach 2013). Successful drug development can be seen considering each approach. 

Coronaviruses can enter cells via fusion either directly at the cell surface or can be internalized 

through the endosomal compartment. The attachment of coronaviruses to the surface of the host cells 

is based on the formation of a coronavirus S protein and the ACE2 receptor of the host cell. The 

interactions, which result in the entry of the virus, also require activation of the S protein by the cellular 

proteinases (Kawase et al. 2012; Coutard et al. 2020). ACE2 is a metalloproteinase of wich physiological 

function is hydrolytic cleavage is the protein angiotensin 2 (Tipnis et al. 2000; Heurich et al. 2014). It 

most often resides on the surface of epithelial cells that cover the surface of internal body cavities, such 

as the walls of the heart, intestines, and alveoli. However, not only angiotensin-2 but also the spike 

proteins of the SARS-CoV viruses can bind to the ACE2 receptors, making this receptor the key to 

viral cell infection. Inhibition of ACE2 enzymic activity by natural or synthetic inhibitors is not without 

risks. The main function of ACE2 is to inactivate angiotensin-2, the octapeptide with hypertensive 

activity. If we reduce the activity of ACE2, angiotensin-2 will build-up, which raises blood pressure and 

can trigger dangerous inflammatory processes (Heurich et al. 2014).  

By this time, inhibition of the transmembrane protease serine 2 resulted in several prosperous 

results in blocking the attachment of coronaviruses in the surface of the host cells. TMPRSS2 facilitates 

human coronaviruses SARS-CoV and SARS-CoV-2 infections via two independent mechanisms, (a) 
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proteolytic cleavage of ACE2 receptor, which promotes viral uptake (Heurich et al. 2014), and cleavage 

of coronavirus spike glycoproteins which activates the glycoprotein for host cell entry (Hoffmann et al. 

2020). Inhibition of the latter activity of TMPRSS2 by camostat mesylate (NI-03) (Figure 4), proved to be 

a clinically approved approach to block entry of the SARS-CoV 2 virus into mammalian cells and might 

constitute a treatment option (Hoffmann et al. 2020). 

CORONAVIRUS RNA-DEPENDENT RNA-POLYMERASE 

Molecular biological studies indicated that all structural proteins (including the spike (S), 

envelope (E), membrane (M), hemagglutinin-esterase (HE), and nucleocapsid (N)) show considerable 

structural variations among the different CoVs (Woo et al. 2005; Shen et al. 2019; Marra et al. 2003; 

Rota et al. 2003). On the contrary, protein structural analyses suggest that key binding pockets of the 

RNA-dependent RNA-polymerase (RdRs) enzymes are likely to be conserved across the three CoV 

viruses. Therefore, it is reasonable to use data from agents already assessed for activity against 

SARS/MERS CoVs to extrapolate to SARS-CoV-2. Accordingly, the RNA-dependent RNA-

polymerase (similar to RNA helicase, and the main proteinase (Mpro,20) constitute attractive 

nonstructural protein targets for the development of wide-spectrum anti-coronavirus drugs. 

Coronaviruses are single-strained, positive-sense, nonsegmented RNA viruses (Class IV) 

according to the Baltimore scheme (Baltimore 1971). They can use their genome both as genomic and 

mRNA. One of the viral genes expressed yields an RNA-dependent RNA-polymerase (or RNA 

replicase), which creates minus-strand RNA from the plus-strand genome. The minus-strand RNA can 

be used as a template for more plus-strand RNA, which can be used as mRNA or as genomes for the 

newly forming viruses. Present-day inhibitors of such activities of RNA-dependent RNA-polymerases 

are nucleoside analogs. The approved nucleoside analogs favipiravir and ribavirin have been tested against 

SARS and MERS and shown to have antiviral effects in vitro. Clinical results have suggested that 

favipiravir affected patients with COVID-19, and it has been added to the list of potential therapies there 

(Cai et al. 2020). Ribavirin is a guanosine analog with in vitro activity against a large number of highly 

lethal emerging viruses (Figure 5). Ribavirin inhibits RNA synthesis by viral RdRp as well as inhibiting 

mRNA capping. Studies demonstrated, however, that while SARS-CoV, MERS-CoV, and HCoV-

OC43 were sensitive to ribavirin in vitro, doses that significantly inhibited CoV replication exceeded 

ribavirin concentrations attainable by typical human regimens (Falzarano et al. 2013). 

Remdesivir (Figure 5) was initially studied as a possible treatment for Ebola but was not 

particularly effective in comparison to other agents investigated in these outbreaks. It is effective in in 

vitro tests and animal models of SARS and MERS. Additional studies demonstrated that remdesivir 
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decreased viral titers and viral RNA in in vitro models of both SARS-CoV and MERS-CoV infection of 

HAEs (Sheahan et al. 2017). 

Furthermore, Yin et al. (Yin et al. 2020) reported the structure of the SARS-CoV-2 RdRp 

either in the apo form or in complex with a 50-base template-primer RNA and remdesivir (GS-5734). 

The complex structure revealed that the partial double-stranded RNA template was inserted into the 

central channel of the RdRp, where remdesivir is incorporated into the first replicated base pair and 

terminates the chain elongation  (Yin et al. 2020). The results can provide a rational basis to design even 

more potent SARS-CoV RdRs inhibitors. One of the prosperous candidates is galidesivir (BCX4430). It 

has broad-spectrum antiviral effectiveness against a range of RNA virus families, including 

coronaviruses (SARS and MERS) (Zumla et al. 2016). 

CORONAVIRUS RNA HELICASE 

To convert a closed double-stranded DNA or RNA helix into two open single strands, so that 

other protein machinery can manipulate the polynucleotides, the cells require helicases. Helicases are 

small molecular motors that use energy derived from ATP hydrolysis. They are classified into six 

superfamilies SF1-SF6 and participate in almost every aspect of nucleic acid metabolism. DNA 

helicases play key roles in DNA replication, recombination, and repair. Cells need RNA helicases for 

transcription, translation, and RNA splicing. Earlier, several potent antiviral drugs were discovered that 

inhibit an essential herpes simplex virus (HSV) helicase complex, and this discovery inspired many 

others to study helicases as drug targets (Guang Xi 2007; Kwong, Rao & Jeang 2005; Shadrick et al. 

2012). 

The majority of helicases prefer only one type of nucleic acid (i.e., either RNA or DNA) as an 

unwinding substrate (Frick 2003). Regardless of their functional diversity, helicases all contain core 

domains that hydrolyze nucleoside triphosphates. The enzymatic core is formed either by the tandem 

RecA- like domains within the same polypeptide chain (SF1-SF2 superfamilies) or between subunits of 

the functional oligomer of the helicase (SF3-SF6 superfamilies) (Singleton, Dillingham & Wigley 2007). 

Sequence conservation analysis indicates that SARS CoV helicase belongs to the SF1 superfamily, 

including Rep, UvrD, PcrA, RecD, Pif1, Dda, Upf1-like helicases, and many positive ss RNA virus 

helicases (Gorbalenya & Koonin 1989). 

Hao and co-workers first reported on the X-ray structure of MERS CoV helicase (Hao et al. 

2017). The authors found that MERS-CoV helicase has multiple domains, including an N-terminal 

Cys/His rich domain (CH) with three zinc atoms, a beta-barrel domain, and a C-terminal SF1 helicase 
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core with two RecA-like subdomains. It was found that while the domain organization of helicases 

(nsp13 proteins) is conserved throughout nidoviruses, the individual domains of them are closely 

related to the equivalent eukaryotic domains of Upf1 helicases. Earlier, Yu and co-workers conducted 

in vitro biochemical experiments to find out which natural compounds might suppress either (1) the 

DNA unwinding activity or (2) the ATPase activity of the SARS CoV helicase. The authors 

demonstrated that selected naturally-occurring flavonoids, including myricetin (12) and scultellarein (13) 

(Figure 6), might serve as SARS-CoV chemical inhibitors (Yu et al. 2012). 

Tanner and coworkers (Tanner et al. 2005) have found that bananin (14) (Figure 7) and its 

three derivatives function as noncompetitive SARS-CoV helicase inhibitors at a site different from the 

ATP and nucleic acid binding site, causing inhibition probably through an allosteric mechanism. Lee et 

al. discovered a novel chemical compound, (E)-3-(furan-2-yl)-N-(4-sulfamoylphenyl)acrylamide (15) 

(Figure 7) that suppresses the enzymatic activities of SARS coronavirus helicase. The authors 

performed ATP hydrolysis and double-stranded DNA unwinding inhibitory assays and found IC50 

values of the µM range (Lee et al. 2017). Pillaiyar et al. recently published a comprehensive survey on 

the chemical structures that have proved to be effective against SARS and MERS viruses according to 

the different potential targets. In their review, they did not mention any helicase inhibitors approved for 

antiviral therapy. The most promising candidate has been a synthetic 1,2,4-triazole derivative 16 

(SSYA10-001) that inhibited the viral NTPase/helicase of both SARS-and MERS-CoVs (Pillaiyar, 

Meenakshisundaram & Manickam 2020). Based on the results, compound 16 (Figure 7) could serve as a 

potential lead for the development of effective broad-spectrum anti-coronavirus drugs. 

NATURAL PRODUCTS 

For centuries, the natural products and their derivatives have been recognized as inexhaustible 

sources of therapeutic agents (Rodrigues et al. 2016; Zhi et al. 2019; Molinari 2009). The molecular 

structures and supramolecular arrangements of natural products have continued to inspire the 

development new drug entity (Molinari 2009; Viegas, Da Silva Bolzani & Barreiro 2006). The treatment 

of viral infections has witnessed the use of extracts, formulations, active principles of plant origin (S. 

Hu et al. 2019). For instance, plant species rich in quinoline alkaloids belonging to the Rutaceae family 

(Almeidea coerulea, Araliopsis tabouensis, Boronella koniambiensis, Brombya sp. nov., Esenbeckia pentaphylla, Evodia 

fargesii, Haplophyllum sieversii, Melicope bonwickii, Melicope semecarpifolia, Philotheca deserti var. deserti, Pilocarpus 

grandiflorus, Ruta chalepensis, Spathelia excelsa, Spiranthera odoratissima, Toddalia aculeata , Zanthoxylum 

ailanthoides, Zanthoxylum heitzii) posesses antiviral property (da Silva et al. 2013). 
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Potent antiviral activities of several alkaloids, chalcones, triterpenoids have been reported 

(Islam et al. 2020). In the previous study, alkaloids that were isolated from the root bark of Z. 

ailanthoides inhibited viral replication in H9 lymphocyte cells without significant impact on the growth of 

uninfected H9 cells (Chouhan et al. 2014). In order to ensure therapeutic success of plant extract or 

isolates in the treatment of COVID-19, the screening for antiviral activities needs to take account of 

the coronavirus machinery for replication and pathophysiological mechanistic. The extracts with 

phytoconstituents that exhibit activities against coronavirus as shown in Table 1. 

Current challenges with the therapeutic application of extracts and active principles of plant 

origin in the treatment of coronavirus infection include unconfirmed efficacy or safety in the clinic as 

well as the complete underlying mechanisms (Li et al. 2005). The emergence and spread of resistant 

strains, as well as the high rates of mutations in microorganisms, reduced the effectiveness of antiviral 

drugs (Gerrish and García-Lerma 2003). Altogether, there are needs to continually develop new 

antiviral therapies with wide or narrow spectrum in order to solve drug resistance problems or find new 

molecules and novel mechanisms of action in the treatment of viral diseases. 

SYNTHETIC DERIVATIVES 

Chloroquine (17) and hydroxychloroquine (18) are synthetic derivatives of quinine (19), a 

quinolinic alkaloid that was isolated from the bark of a Cinchona tree by pharmacists Pierre Joseph 

Pelletier and Joseph Caventou, around 1920 (Figure 8). For decades the salts of chlorate or phosphate 

of chloroquine (CQ) and hydroxychloroquine (HCQ), both 4-aminoquinolines, have been used to treat 

malaria, an infectious disease caused by species of Plasmodium spp. CQ has been known since 1934 and 

HCQ was synthesized in 1946 by introducing an N-hydroxy-ethyl side chain in place of CQ's N-diethyl 

group (Monteiro et al. 2020). HCQ proved to be (~40%) less toxic (McChesney 1983) during its 

prolonged use (for months or even years), allowing the application of higher doses than QC (Marmor 

et al. 2016) (25 mg/kg for 3 days). Therefore, HCQ is recommended for the treatment of autoimmune 

diseases, such as: lupus erythematosus systemic and rheumatoid arthritis (Lim et al. 2009). 

Although they are generally safe substances when used to treat malaria and autoimmune 

diseases, the safety, efficacy, and benefit of these drugs in the treatment of COVID-19 (SARS-CoV-2) 

have been analyzed by several research groups around the world. The CQ acts on lung cell receptors 

and interferes with the glycosylation of the angiotensin receptor by converting enzyme 2 (ACE2), thus, 

impairing the entry of viruses into cells, since SARS- CoV-2 invades lung cells by endocytosis through 

the ACE2 receptor (W. Li et al. 2003). According to Hu and collaborators, QC induces the suppression 

of phosphatidylinositol binding clathrin assembly protein (PICALM), preventing, in this way, 
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endocytosis (Hu, Frieman & Wolfram 2020). The alkalinization of lung cells promoted by 4-

aminoquinoline also hinders viral replication, as it impairs the function of the endosome, inhibits the 

fusion of autophagosomalysoma, in addition to inactivating enzymes that are essential for viral 

replication (Savarino et al. 2003). 

The in vitro antiviral activity of QC (Inglot 1969) was first verified in the late 1960s, when the 

ability of this drug to inhibit the synthesis of encephalomyocarditis virus was demonstrated. Currently, 

there are in vitro studies that have suggested an anti-SARS-CoV activity (Keyaerts et al. 2004)  of the 

QC and HCQ salts. Liu et al (Yao et al. 2020) recommend using HCQ sulfate (400 mg given twice a 

day, followed by 200 mg twice a day for another 4 days) to treat patients infected with SARS-CoV-2. 

Considering the usage history of these drugs, their safety and their low cost, these authors 

recommended that clinical studies be carried out to evaluate the effects of the drug in patients infected 

with COVID-19. 

The effectiveness of QC phosphate in humans for the treatment of severe acute respiratory 

syndrome caused by the coronavirus was initially reported by Chinese scientists Gao and collaborators. 

However, this publication, available in Preprints repositories, does not present scientific data to support 

such findings and, therefore, cannot be taken as conclusive (Gao, Tian & Yang 2020). Despite this, the 

Republic of China, through the National Health Commission, included QC in its sixth edition of the 

Guidelines for the prevention, diagnosis, and treatment of pneumonia induced by the new coronavirus 

(Dong, Hu & Gao 2020). Chinese guidelines recommend using doses of 300 mg to 500 mg (twice daily) 

of QC phosphate over a period of 10 days. A preliminary clinical study conducted in the south of 

France verified the efficiency of HCQ sulfate 600 mg/d (200 mg, three times per day, during ten days) 

in reducing viral load in patients diagnosed with COVID-19. Gautret and collaborators  reported that 

the elimination of the virus was more efficient when azithromycin was associated with HCQ (Gautret 

et al. 2020). 

In Brazil, a randomized, double-blind trial, conducted by Borba and  colleagues, with 81 

hospitalized patients due to SARS-CoV-2 infection, showed that the highest dose of chloroquine 

(600mg CQ twice daily for 10 days) should not be recommended for critically ill patients with COVID-

19 for safety reasons due to prolonged QTc interval and increased lethality (Borba et al. 2020). The 

study also found that the potential risk to safety (safety hazards) of patients increases, especially when 

QC is administered in combination with azithromycin and oseltamivir. Despite the effectiveness of QC 

or HCQ in laboratory studies, reports in the literature (Wang et al. 2015) describe the difficulty and 

even the disappointment when transposing it to a clinical scale. The complex pharmacokinetics of 4-
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aminoquinolines justify these differences between the results of laboratory and clinical trials (Lim et al. 

2009; Smit et al. 2020). 4-aminoquinolines demonstrate high basicity, high half-life (around 40-45 days), 

lead to accumulation in lysosomes, in addition to having a high volume of distribution and long renal 

clearance. 

The main adverse effects related to the use of CQ and HCQ are related to retinopathy 

(Saurabh et al. 2013) which can occur even after discontinuation of treatment. Another reported 

adverse effect is cardiovascular toxicity, due to its electrical instability, characterized by the 

prolongation of the QT internalo, that is, the time spent for ventricular depolarization and 

repolarization. This mechanism is related to the blocking of the hERG potassium channel, which 

prolongs ventricular repolarization and the duration of action potentials, triggering ventricular 

arrhythmias. Studies by Shi et al  and Guo et al  demonstrate that patients who suffer from 

cardiovascular diseases and are infected with SARS-CoV are more likely to develop ventricular 

arrhythmias (Shi et al. 2020; Guo et al. 2020). 

Therefore, given the lack of sufficient scientific evidence (Geleris et al. 2020) to prove the 

efficacy and safety of CQ and HCQ to treat patients infected with coronavirus (COVID-19), the World 

Health Organization has temporarily suspended clinical trials with these drugs. Despite this, countries 

like China and Brazil (Rosenberg et al. 2020; Mahévas et al. 2020; Tang et al. 2020)  maintain guidelines 

and protocols that suggest they authorize the use of these drugs to treat patients with SARS-CoV-2. 

Another derivative synthesized, obtained in 1975, and that comes from natural products, is ivermectin. 

It derives from avermectin, a product that comes from the fermentation of the actinomycete 

Streptomyces avermitilis, through catalytic hydrogenation of a single double bond. Ivermectin (anti-

parasitic) has greater potency and less toxicity than avermectin, which is used for its insecticidal and 

anthelmintic action. Ivermectin inhibited SARS-CoV-2 in laboratory cultures of infected cells (Vero-

hSLAM cells) (Caly et al. 2020).  

Ivermectin probably interacts with transmembrane transporters (Impae Impb1) thus 

preventing the virus from entering the cell nucleus. Consequently, viral multiplication would be 

inhibited and this would result in decreased infection, as there would be a reduced inhibition of 

antiviral responses, leading to a more efficient antiviral response. However, the results presented in 

monkey kidney cell cultures were relatively high (IC50 = 2,5 µm), requiring extremely high doses for 

therapeutic effects in humans and, consequently, already proving not to be an effective drug for the 

treatment of Covid-19 (Momekov & Momekova 2020). In addition, previous experiments in cell 

cultures have shown to be effective in treating Dengue virus infection, but have failed in animal 
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models. Finally, on April 10, 2020, the FDA's Center for Veterinary Medicine (FDA Letter to 

Stakeholders: Do Not Use Ivermectin Intended for Animals as Treatment for COVID-19 in Humans 

FDA n.d.) advised not to use ivermectin that is intended for animals as a treatment for Covid-19 in 

humans. In addition to CQ, HCQ and Ivermectin, other drugs (not derived from natural products) are 

being considered, such as: remdesivir, lopinavir, ritonavir, favipiravir and pegylated interferon with 

ribavirin (Ahn et al. 2020) are also being tested in a constant and global effort by research laboratories 

and institutions to develop both an effective therapy and a vaccine to treat emerging infectious 

contagious diseases, such as COVID-19, which is currently unsolved. 

ARTIFICIAL INTELLIGENCE DRIVEN DRUG DISCOVERY 

Although there are already several drugs being assessed clinically for SARS-CoV-2 (Beigel et 

al. 2020; García et al. 2020; Irvani et al. 2020; Irie et al. 2020), the continuous efforts to discover new 

drug candidates more effective, safe, and inexpensive remain necessary. However, the accelerated 

discovery of new anti-COVID-19 drugs represents a major challenge, since this demand is 

incompatible with current drug discovery pipelines, which require long cycle times of research, and 

present limited success in clinical trials (Nosengo 2016). To make this process faster and efficient, 

academies, startups and big pharmaceutical companies are exploring the potential of artificial 

intelligence (AI) systems to help streamline their research and development (R&D) process (Ekins et al. 

2019).  

With the recent advances in computer technology, solid progress in AI-drive drug discovery 

field has been made by using machine learning (ML) techniques.  These techniques enable the 

development of mathematical models from various data types. Once having learned from the data, the 

ML model can be used to make predictions or decisions without being explicitly programmed to do so. 

The possibilities of ML seem virtually unlimited, with applications ranging from automation of whole 

organism assays (Singh, Carpenter & Genovesio 2014),  lead identification and optimization (Neves et 

al. 2018; Chen et al. 2018), early accessing of pharmacokinetics and toxicological (ADME/Tox) profile 

of compounds (Goh, Hodas & Vishnu 2017), formulation design (Alves et al. 2019), as well as clinical 

trial recruiting, design and optimization (Gayvert, Madhukar & Elemento 2016). Applying ML to 

discovery NP with potential anti-SARS-CoV-2 activity is a sequential process that involves the use of 

algorithms to learn from datasets of compounds with bioactivity data (Figure 9) (Lavecchia 2015). 

Initially, chemical and biological data are collected from bioassay databases and the literature 

and curated using standardized protocols (Fourches et al. 2010; Alves et al. 2016). In this sense,  

thousands of compounds with experimental ADME/Tox properties, and  bioactivity data  for SARS-
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CoV-2 are publicly available on databases such as ChEMBL (Gaulton et al. 2012) and PubChem 

Bioassay (Y. Wang et al. 2012). Then, molecular descriptors (i.e., final result of a mathematical 

procedure which transforms chemical structure into a useful number) are calculated on different levels 

of representation (1D to nD) of chemical structures (Chuang, Gunsalus & Keiser 2020). In the learning 

phase, a ML technique is applied to discover an empirical function that can achieve an optimal mapping 

between the molecular descriptors and experimental property. To date,  Support Vector Machine 

(SVM) (Vapnik 2000), Random Forest (RF) (Breiman 2001), and Deep Neural Networks (Lusci, 

Pollastri & Baldi 2013) are the most popular and effective ML methods for modeling quantitative 

structure-activity relationships. At the end of this step, the ML model must be subjected to rigorous 

statistical validation to determine its predictive power (Cherkasov et al. 2014). Once presenting a 

satisfactory statistical performance, ML models may be applied as filters in virtual screening (VS) of 

libraries of natural and semisynthetic compounds (i.e., 103 to 104 chemical structures) (Cherkasov et al. 

2014).  

In principle, VS is often compared to a funnel, where a large number of natural products in 

chemical libraries (i.e., 103 to 105 compounds) are reduced to a smaller number of virtual hits that will 

be tested experimentally (i.e., 101 to 102 compounds) (Tanrikulu, Krüger & Proschak 2013; Kar & Roy 

2013). Although in principle, ML models are the most useful tools for the identification of bioactive 

compounds, complementary computational methods can be incorporated into VS as a multi-step 

filtering process, including: (i) sets of empirical rules (e.g., Veber (Veber et al. 2002) and Lipinski’s 

(Lipinski et al. 1997) rules, pan-assay interference rules and models (Baell & Holloway 2010; Jasial et al. 

2018)); (ii) chemical similarity cutoffs; (iii) ADME/Tox filters (Braga et al. 2015); (iv) and  molecular 

docking (Kitchen et al. 2004). In this sense, the integration of different methods increases reliability in 

predictions and the hit rate in VS. 

Generally, typical hit rates from experimental VS typically range between 1% and 40%, while 

the hit rates of experimental random screening approaches range between 0.01% and 0.1% (T. Zhu et 

al. 2013). Despite the high hit rate, the expectation that ML-based VS can completely replace 

experimental assays is overoptimistic. So, in vitro experimental validation of computational hits should 

be performed as the most important step of the study. After experimental validation of virtual hits, ML 

models can still play a key role in the hit-to-lead and lead optimization design of semisynthetic 

compound series. In this sense, models can be used as a multi-parameter optimization decision system 

to find the compounds with adequate balance between potency, selectivity and ADME/Tox properties 

(Neves et al. 2018). 
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CONCLUSION 

This study investigated the antiviral effects of the natural products against SARS-CoV, HCoV-

NL63, HCoV-229E and HCoV-OC43. Also, the Lycorine, Emodin, Promazine, Saikosaponins B2, 

Silvestrol, Cepharanthine, Fangchinoline, Tetrandrine, Caffeic acid, Chlorogenic acid, Gallic acid and 

Emetine are considered an important hit compounds for prospective anti-SARS-CoV-2 drug discovery.  

Further hit-to-lead analyses are required to transform these potential inhibitors into clinical drugs. We 

anticipate that the insights gained in the present work may prove valuable for exploring novel natural 

products as anti-COVID-19 therapeutic agents in the future. 
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Iniciando a Descoberta de Drogas Anti-COVID-19 com Produtos 
Naturais 

 
RESUMO 

COVID-19 foi caracterizada como uma pandemia por sua rápida disseminação internacional e 
gravidade em março de 2020. A família Coronaviridae recebe esse nome devido à organização da 
glicoproteína de pico localizada no envelope, que se assemelha a uma coroa estelar quando observada 
ao microscópio. Os coronavírus sofrem mutações frequentes em seu genoma devido a erros cometidos 
pela RNA polimerase dependente de RNA (RdRp). O SARS-CoV-2 foi caracterizado por alta 
infectividade e transmissão pessoa a pessoa, com período de incubação de até quatorze dias. Atividades 
antivirais potentes de vários produtos naturais, como alcalóides, chalconas, triterpenóides, foram 
relatadas, mas com eficácia ou segurança não confirmadas na clínica, bem como nos mecanismos 
subjacentes completos. Além disso, CQ, HCQ e ivermectina, remdesivir, lopinavir, ritonavir, favipiravir 
e interferon peguilado com ribavirina foram testados para desenvolver uma terapia eficaz e uma vacina 
para tratar COVID-19. Este estudo investigou os efeitos antivirais dos produtos naturais contra SARS-
CoV, HCoV-NL63, HCoV-229E e HCoV-OC43. Além disso, licorina, emodina, promazina, 
saikosaponinas B2, silvestrol, cefarantina, fangchinoline, tetrandrina, ácido cafeico, ácido clorogênico, 
ácido gálico e emetina são considerados compostos de sucesso importantes para a descoberta de drogas 
anti-SARS-CoV-2. 
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